Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems

被引:45
作者
Ding, Feng [1 ]
Wang, Xuehai [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Gradient search; Hierarchical identification; Performance analysis; Bilinear-in-parameter system; WIENER NONLINEAR-SYSTEMS; SQUARES IDENTIFICATION ALGORITHM; STATE-SPACE SYSTEMS; AUXILIARY MODEL; HAMMERSTEIN SYSTEMS; FILTERING TECHNIQUE; DYNAMICAL-SYSTEMS; NEWTON ITERATION; DELAY;
D O I
10.1007/s00034-016-0367-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-in-parameter system into two subsystems and to derive the HSG identification algorithm for estimating the system parameters by replacing the unknown variables in the information vectors with their estimates obtained at the previous time. The convergence analysis of the proposed algorithm indicates that the parameter estimation errors converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithm is effective.
引用
收藏
页码:1393 / 1405
页数:13
相关论文
共 46 条
[1]   Estimation of the parameters of a bilinear model with applications to submarine detection and system identification [J].
Abrahamsson, Richard ;
Kay, Steven M. ;
Stoica, Petre .
DIGITAL SIGNAL PROCESSING, 2007, 17 (04) :756-773
[2]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[3]   Identification of Wiener Time Delay Systems Based on Hierarchical Gradient Approach [J].
Atitallah, Asma ;
Bedoui, Saida ;
Abderrahim, Kamel .
IFAC PAPERSONLINE, 2015, 48 (01) :403-408
[4]   Least squares solutions of bilinear equations [J].
Bai, EW ;
Liu, Y .
SYSTEMS & CONTROL LETTERS, 2006, 55 (06) :466-472
[5]   A blind approach to the Hammerstein-Wiener model identification [J].
Bai, EW .
AUTOMATICA, 2002, 38 (06) :967-979
[6]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[7]   Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments [J].
Cao, Xiang ;
Zhu, Daqi ;
Yang, Simon X. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (11) :2364-2374
[8]  
Chu Z.Z., 2016, IEEE T NEUR NET LEAR, DOI [10.1109/TNNLS, DOI 10.1109/TNNLS]
[9]   Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition [J].
Ding, Feng ;
Liu, Ximei ;
Ma, Xingyun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 :135-143
[10]   The recursive least squares identification algorithm for a class of Wiener nonlinear systems [J].
Ding, Feng ;
Liu, Ximei ;
Liu, Manman .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (07) :1518-1526