Foreign exchange rate;
Esscher transform;
Risk-neutral measure;
European call option;
Levy processes;
Markov processes;
JUMP-DIFFUSION-MODEL;
TERM STRUCTURE;
OPTIONS;
REGIME;
D O I:
10.1016/j.insmatheco.2014.05.005
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
Using a Levy process we generalize formulas in Bo et al. (2010) for the Esscher transform parameters for the log-normal distribution which ensure that the martingale condition holds for the discounted foreign exchange rate. Using these values of the parameters we find a risk-neural measure and provide new formulas for the distribution of jumps, the mean jump size, and the Poisson process intensity with respect to this measure. The formulas for a European call foreign exchange option are also derived. We apply these formulas to the case of the log-double exponential distribution of jumps. We provide numerical simulations for the European call foreign exchange option prices with different parameters. (C) 2014 Elsevier B.V. All rights reserved.
机构:
Bank Canada, Funds Management & Banking Dept, Ottawa, ON, CanadaUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
Zhou, Nanxin
;
Mamon, Rogemar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, CanadaUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
机构:
Bank Canada, Funds Management & Banking Dept, Ottawa, ON, CanadaUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
Zhou, Nanxin
;
Mamon, Rogemar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, CanadaUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada