Pricing currency derivatives with Markov-modulated Levy dynamics

被引:20
作者
Swishchuk, Anatoliy [1 ]
Tertychnyi, Maksym [1 ]
Elliott, Robert [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
Foreign exchange rate; Esscher transform; Risk-neutral measure; European call option; Levy processes; Markov processes; JUMP-DIFFUSION-MODEL; TERM STRUCTURE; OPTIONS; REGIME;
D O I
10.1016/j.insmatheco.2014.05.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
Using a Levy process we generalize formulas in Bo et al. (2010) for the Esscher transform parameters for the log-normal distribution which ensure that the martingale condition holds for the discounted foreign exchange rate. Using these values of the parameters we find a risk-neural measure and provide new formulas for the distribution of jumps, the mean jump size, and the Poisson process intensity with respect to this measure. The formulas for a European call foreign exchange option are also derived. We apply these formulas to the case of the log-double exponential distribution of jumps. We provide numerical simulations for the European call foreign exchange option prices with different parameters. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 35 条
[1]   BIASES IN OPTION PRICES - EVIDENCE FROM THE FOREIGN-CURRENCY OPTION MARKET [J].
ADAMS, PD ;
WYATT, SB .
JOURNAL OF BANKING & FINANCE, 1987, 11 (04) :549-562
[2]   The pricing of foreign currency options under jump-diffusion processes [J].
Ahn, Chang Mo ;
Cho, D. Chinhyung ;
Park, Keehwan .
JOURNAL OF FUTURES MARKETS, 2007, 27 (07) :669-695
[3]   PRICING FOREIGN-CURRENCY OPTIONS UNDER STOCHASTIC INTEREST-RATES [J].
AMIN, KI ;
JARROW, RA .
JOURNAL OF INTERNATIONAL MONEY AND FINANCE, 1991, 10 (03) :310-329
[4]  
[Anonymous], 1982, Stochastic Calculus and Applications, Application of Mathematics
[5]  
[Anonymous], 1995, Continuous Univariate Distributions
[6]  
Benth F. E., 2008, STOCHASTIC MODELING
[7]  
Bjork T., 1998, ARBITRAGE THEORY CON
[8]   Markov-modulated jump-diffusions for currency option pricing [J].
Bo, Lijun ;
Wang, Yongjin ;
Yang, Xuewei .
INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (03) :461-469
[9]   The market model of interest rate dynamics [J].
Brace, A ;
Gatarek, D ;
Musiela, M .
MATHEMATICAL FINANCE, 1997, 7 (02) :127-155
[10]   Option pricing for pure jump processes with Markov switching compensators [J].
Elliott, RJ ;
Osakwe, CJU .
FINANCE AND STOCHASTICS, 2006, 10 (02) :250-275