NONVANISHING OF BETTI NUMBERS OF EDGE IDEALS AND COMPLETE BIPARTITE SUBGRAPHS

被引:10
作者
Kimura, Kyouko [1 ]
机构
[1] Shizuoka Univ, Fac Sci, Dept Math, Shizuoka 4228017, Japan
关键词
Complete bipartite graphs; Edge ideals; Graded Betti numbers; Lyubeznik resolutions; Projective dimension; MINIMAL FREE RESOLUTIONS; PROJECTIVE DIMENSION; MONOMIAL IDEALS; INDEPENDENCE; REGULARITY; BOUNDS;
D O I
10.1080/00927872.2014.984840
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite simple graph, one can associate the edge ideal. In this article, we prove that a graded Betti number of the edge ideal does not vanish if the original graph contains a set of complete bipartite subgraphs with some conditions. Also we give a combinatorial description for the projective dimension of the edge ideals of unmixed bipartite graphs.
引用
收藏
页码:710 / 730
页数:21
相关论文
共 41 条
[1]  
[Anonymous], 1990, TOPICS ALGEBRA
[2]   On ideals whose radical is a monomial ideal [J].
Barile, M .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (12) :4479-4490
[3]   Extremal Betti numbers and applications to monomial ideals [J].
Bayer, D ;
Charalambous, H ;
Popescu, S .
JOURNAL OF ALGEBRA, 1999, 221 (02) :497-512
[4]  
Bouchat R.R., 2008, THESIS U KENTUCKY AN
[5]  
Bruns W., 1998, CAMBRIDGE STUDIES AD, V39
[6]   Minimal free resolutions of linear edge ideals [J].
Chen, Ri-Xiang .
JOURNAL OF ALGEBRA, 2010, 324 (12) :3591-3613
[7]  
Corso A, 2009, T AM MATH SOC, V361, P1371
[8]   Projective dimension, graph domination parameters, and independence complex homology [J].
Dao, Hailong ;
Schweig, Jay .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) :453-469
[9]  
Dochtermann A, 2009, ELECTRON J COMB, V16
[10]   Resolutions of Stanley-Reisner rings and Alexander duality [J].
Eagon, JA ;
Reiner, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (03) :265-275