A subspace predictive control method for partially unknown systems with parameter learning event-triggered law

被引:5
作者
Li, Zhe [1 ]
Yang, Guang-Hong [1 ,2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Subspace predictive control (SPC); Event-triggered; Reinforcement learning; Computation load; STABILITY;
D O I
10.1016/j.neucom.2018.04.050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel event-triggered subspace predictive control (SPC) method for a class of linear discrete-time partially unknown systems. Without the complete system parameter information, the design parameters of the event-triggered law are first derived via system data by the reinforcement learning method. The proposed event-triggered law depends on the defined input error and the state-dependent threshold. The receding horizon principle in the typical predictive control methods is substituted by the event-triggered law, which can ensure the stability of the predictive input with optimality. The proposed method can considerably reduce the data computation and transmission load of the conventional SPC methods. The simulation results illustrate the effect and the satisfactory performance of the proposed method. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 34 条
  • [1] Event-based networked control and scheduling codesign with guaranteed performance
    Al-Areqi, Sanad
    Goerges, Daniel
    Liu, Steven
    [J]. AUTOMATICA, 2015, 57 : 128 - 134
  • [2] [Anonymous], 1996, SUBSPACE IDENTIFICAT, DOI DOI 10.1007/978-1-4613-0465-4
  • [3] BRADTKE SJ, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P3475
  • [4] Online Optimal Control of Affine Nonlinear Discrete-Time Systems With Unknown Internal Dynamics by Using Time-Based Policy Update
    Dierks, Travis
    Jagannathan, Sarangapani
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (07) : 1118 - 1129
  • [5] ROBUST LINEAR-QUADRATIC DESIGNS WITH REAL PARAMETER UNCERTAINTY
    DOUGLAS, J
    ATHANS, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (01) : 107 - 111
  • [6] Eqtami A, 2010, P AMER CONTR CONF, P4719
  • [7] Favoreel W., 1999, Proceedings of the 14th World Congress. International Federation of Automatic Control, P235
  • [8] Asynchronous Networked MPC With ISM for Uncertain Nonlinear Systems
    Incremona, Gian Paolo
    Ferrara, Antonella
    Magni, Lalo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) : 4305 - 4317
  • [9] Input-to-state stability for discrete-time nonlinear systems
    Jiang, ZP
    Wang, Y
    [J]. AUTOMATICA, 2001, 37 (06) : 857 - 869
  • [10] Optimal Tracking Control of Unknown Discrete-Time Linear Systems Using Input-Output Measured Data
    Kiumarsi, Bahare
    Lewis, Frank L.
    Naghibi-Sistani, Mohammad-Bagher
    Karimpour, Ali
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (12) : 2770 - 2779