Integration of Hyperbolic Tangent and Gaussian Kernels for Fuzzy C-means Algorithm with Spatial Information for MRI Segmentation

被引:0
作者
Venu, Nookala [1 ]
Anuradha, B. [1 ]
机构
[1] Sri Venkateswara Univ, Dept Elect & Commun Engn, Tirupati 517502, Andhra Pradesh, India
来源
2013 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC) | 2013年
关键词
FCM; hyperbolic tangent function; Image Segmentation; Gaussian Kernal; fuzzy; multiple-kernal; IMAGE SEGMENTATION; FCM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a new segmentation algorithm by integrating the hyperbolic tangent and Gaussian kernels for fuzzy c-means (HGFCM) algorithm with spatial information is proposed for medical image segmentation. The proposed method uses the combined kernels of hyperbolic tangent function and Gaussian kernel with the spatial information of neighboring pixels for clustering of images. The performance of the proposed algorithm is tested on OASIS-MRI image dataset. The performance is tested in terms of score, number of iterations (NI) and execution time (TM) under different Gaussian noises on OASIS-MRI dataset. The results after investigation, the proposed method shows a significant improvement as compared to other existing methods in terms of score, NI and TM under different Gaussian noises on OASIS-MRI dataset.
引用
收藏
页码:280 / 285
页数:6
相关论文
共 26 条
[1]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[2]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838
[3]   A Multiple-Kernel Fuzzy C-Means Algorithm for Image Segmentation [J].
Chen, Long ;
Chen, C. L. Philip ;
Lu, Mingzhu .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (05) :1263-1274
[4]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916
[5]   Image segmentation using wavelet-domain classification [J].
Choi, H ;
Baraniuk, R .
MATHEMATICAL MODELING, BAYESIAN ESTIMATION, AND INVERSE PROBLEMS, 1999, 3816 :306-320
[6]  
Indira S. U., 2011, INT C PROC AUT CONTR, P1
[7]   Robust kernel FCM in segmentation of breast medical images [J].
Kannan, S. R. ;
Ramathilagam, S. ;
Devi, R. ;
Sathya, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) :4382-4389
[8]   Color Texture Segmentation Based on the Modal Energy of Deformable Surfaces [J].
Krinidis, Michail ;
Pitas, Ioannis .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) :1613-1622
[9]  
Macqueen J., 1967, 5 BERK S MATH STAT P, P281, DOI DOI 10.1007/S11665-016-2173-6
[10]   Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults [J].
Marcus, Daniel S. ;
Wang, Tracy H. ;
Parker, Jamie ;
Csernansky, John G. ;
Morris, John C. ;
Buckner, Randy L. .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2007, 19 (09) :1498-1507