A new characteristic property of Mittag-Leffler functions and fractional cosine functions

被引:6
作者
Mei, Zhan-Dong [1 ]
Peng, Ji-Gen [1 ]
Jia, Jun-Xiong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Mittag-Leffler function; fractional abstract Cauchy problem; fractional cosine function; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.4064/sm220-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new characteristic property of the Mittag-Leffler function E-alpha(at(alpha)) with 1 < alpha < 2 is deduced. Motivated by this property, a new notion, named alpha-order cosine function, is developed. It is proved that an alpha-order cosine function is associated with a solution operator of an alpha-order abstract Cauchy problem. Consequently, an alpha-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique alpha-order cosine function.
引用
收藏
页码:119 / 140
页数:22
相关论文
共 17 条
  • [1] Spectral analysis of fractional kinetic equations with random data
    Anh, VV
    Leonenko, NN
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) : 1349 - 1387
  • [2] [Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
  • [3] [Anonymous], 2000, Applications of Fractional Calculus in Physics
  • [4] [Anonymous], 1955, HIGHER TRANSCENDENTA
  • [5] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [6] [Anonymous], 2001, FRACTIONAL EVOLUTION
  • [7] ARENDT W, 2001, MONOGR MATH, V96
  • [8] On fractional resolvent operator functions
    Chen, Chuang
    Li, Miao
    [J]. SEMIGROUP FORUM, 2010, 80 (01) : 121 - 142
  • [9] Cauchy problem for fractional diffusion equations
    Eidelman, SD
    Kochubei, AN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) : 211 - 255
  • [10] Goldstein J. A., 1985, SEMIGROUPS LINEAR OP