Robust nonequilibrium pathways to microcompartment assembly

被引:37
作者
Rotskoff, Grant M. [1 ]
Geissler, Phillip L. [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10002 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
self-assembly; nonequilibrium dynamics; carboxysome; BACTERIAL MICROCOMPARTMENTS; CARBOXYSOME SHELL; CARBON FIXATION; PROTEIN SHELL; ORGANELLES; MEMBRANES; DYNAMICS; DEFECTS; CELLS;
D O I
10.1073/pnas.1802499115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cyanobacteria sequester photosynthetic enzymes into microcompartments which facilitate the conversion of carbon dioxide into sugars. Geometric similarities between these structures and self-assembling viral capsids have inspired models that posit microcompartments as stable equilibrium arrangements of the constituent proteins. Here we describe a different mechanism for microcompartment assembly, one that is fundamentally nonequilibrium and yet highly reliable. This pathway is revealed by simulations of a molecular model resolving the size and shape of a cargo droplet and the extent and topography of an elastic shell. The resulting metastable microcompartment structures closely resemble those of carboxysomes, with a narrow size distribution and faceted shells. The essence of their assembly dynamics can be understood from a simpler mathematical model that combines elements of classical nucleation theory with continuum elasticity. These results highlight important control variables for achieving nanoscale encapsulation in general and for modulating the size and shape of carboxysomes in particular.
引用
收藏
页码:6341 / 6346
页数:6
相关论文
共 37 条
[11]   Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly [J].
Grime, John M. A. ;
Dama, James F. ;
Ganser-Pornillos, Barbie K. ;
Woodward, Cora L. ;
Jensen, Grant J. ;
Yeager, Mark ;
Voth, Gregory A. .
NATURE COMMUNICATIONS, 2016, 7
[12]   Irreversible growth model for virus capsid assembly [J].
Hicks, Stephen D. ;
Henley, C. L. .
PHYSICAL REVIEW E, 2006, 74 (03)
[13]   Optimal Compartmentalization Strategies for Metabolic Microcompartments [J].
Hinzpeter, Florian ;
Gerland, Ulrich ;
Tostevin, Filipe .
BIOPHYSICAL JOURNAL, 2017, 112 (04) :767-779
[14]   Organization, Structure, and Assembly of α-Carboxysomes Determined by Electron Cryotomography of Intact Cells [J].
Iancu, Cristina V. ;
Morris, Dylan M. ;
Dou, Zhicheng ;
Heinhorst, Sabine ;
Cannon, Gordon C. ;
Jensen, Grant J. .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 396 (01) :105-117
[15]   Bacterial Microcompartments [J].
Kerfeld, Cheryl A. ;
Heinhorst, Sabine ;
Cannon, Gordon C. .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 64, 2010, 2010, 64 :391-408
[16]   Comparative analysis of carboxysome shell proteins [J].
Kinney, James N. ;
Axen, Seth D. ;
Kerfeld, Cheryl A. .
PHOTOSYNTHESIS RESEARCH, 2011, 109 (1-3) :21-32
[17]   Assembly of Robust Bacterial Microcompartment Shells Using Building Blocks from an Organelle of Unknown Function [J].
Lassila, Jonathan K. ;
Bernstein, Susan L. ;
Kinney, James N. ;
Axen, Seth D. ;
Kerfeld, Cheryl A. .
JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (11) :2217-2228
[18]   Assembly, stability and dynamics of virus capsids [J].
Mateu, Mauricio G. .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2013, 531 (1-2) :65-79
[19]   Halothiobacillus neapolitanus Carboxysomes Sequester Heterologous and Chimeric RubisCO Species [J].
Menon, Balaraj B. ;
Dou, Zhicheng ;
Heinhorst, Sabine ;
Shively, Jessup M. ;
Cannon, Gordon C. .
PLOS ONE, 2008, 3 (10)
[20]   Many-molecule encapsulation by an icosahedral shell [J].
Perlmutter, Jason D. ;
Mohajerani, Farzaneh ;
Hagan, Michael F. .
ELIFE, 2016, 5