A note on spectrum distribution of constraint preconditioned generalized saddle point matrices

被引:6
作者
Cao, Zhi-Hao [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
关键词
constraint preconditioner; generalized saddle point matrix; eigenvalue problem; minimal polynomial; INDEFINITE LINEAR-SYSTEMS; STABILIZED STOKES SYSTEMS; FAST ITERATIVE SOLUTION; EQUATIONS; INEXACT; ALGORITHMS; PART;
D O I
10.1002/nla.631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, results concerning the eigenvalue distribution and form of the eigenvectors of the constraint preconditioned generalized saddle point matrix and its minimal polynomial are given. These results extend previous ones that appeared in the literature. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:503 / 516
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 1997, SPRINGER SERIES COMP
[2]  
[Anonymous], 1959, The Theory of Matrices
[3]  
BANK RE, 1990, NUMER MATH, V56, P645, DOI 10.1007/BF01405194
[4]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[5]   GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM [J].
BERNARDI, C ;
CANUTO, C ;
MADAY, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (06) :1237-1271
[6]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092
[7]  
Bramble JH, 2000, MATH COMPUT, V69, P667, DOI 10.1090/S0025-5718-99-01152-7
[8]   A note on constraint preconditioning or nonsymmetric indefinite matrices [J].
Cao, ZH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) :121-125
[9]  
CAO ZH, CONSTRAINT IN PRESS
[10]   Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems. Part I: Theory [J].
De Sturler, E ;
Liesen, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05) :1598-1619