Location of Faulty Section and Faults in Hybrid Multi-Terminal Lines Based on Traveling Wave Methods

被引:9
|
作者
Ning, Yi [1 ]
Wang, Dazhi [1 ]
Li, Yunlu [2 ]
Zhang, Haixin [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Shenyang Univ Technol, Sch Elect Engn, Shenyang 110870, Liaoning, Peoples R China
基金
国家重点研发计划;
关键词
fault section identification; fault location; traveling wave; multi-terminal lines; TRANSMISSION-LINES; CLASSIFICATION; ALGORITHM;
D O I
10.3390/en11051105
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Traveling-wave-based fault location methods are widely used for modern power systems owing to their high accuracy on two-terminal lines. However, they perform poorly on hybrid multi-terminal lines. Many traveling-wave-based methods have been developed recently to solve this problem, but they have high computational burdens and complex fault location procedures. To tackle this challenge, a new fault location method is presented in this paper. First, to ensure that the implementation of the proposed method is not affected by different line parameters, a normalization algorithm is used for hybrid multi-terminal lines, which consist of overhead lines and cables. To reduce the complexity, a novel fault section identification method that depends only on the first three arrival times is applied to separate a three-terminal fault section from the multi-terminal lines. Consequently, the fault can be located using a corresponding two-terminal fault location method in this fault section. To verify its effectiveness, fault case studies and performance evaluations are performed in the PSCAD and MATLAB/Simulink environment. The simulation results reveal that the proposed method can correctly identify the fault section and accurately locate the faults, which is simple and suitable for hybrid multi-terminal lines.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Traveling Wave Based Fault Location of Multi-terminal Transmission Lines
    Sawai, Suraj
    Pradhan, A. K.
    Naidu, O. D.
    2017 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2017,
  • [2] Traveling Wave Based Autoreclosure Scheme for Multi-Terminal Lines
    George, Neethu
    Naidu, Od.
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [3] A combined impedance and traveling wave based fault location method for multi-terminal transmission lines
    Ngu, E. E.
    Ramar, K.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (10) : 1767 - 1775
  • [4] A novel fault location scheme for multi-terminal transmission lines based on principle of double-ended traveling wave
    Fan, Xinqiao
    Zhu, Yongli
    Dianwang Jishu/Power System Technology, 2013, 37 (01): : 261 - 269
  • [5] Traveling-wave-based Fault Location Algorithm for Star-Connected Hybrid Multi-terminal HVDC System
    Su Wei
    Gong Yanfeng
    Li Yan
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [6] Combined Traveling Wave and Fuzzy Logic Based Fault Location in Multi-Terminal HVDC Systems
    Hossam-Eldini, Ahmed
    Lotfy, Ahmed
    Elgamal, Mohammed
    Ebeed, Mohammed
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC), 2016,
  • [7] Decision tree aided travelling wave based fault section identification and location scheme for multi-terminal transmission lines
    Chaitanya, B. K.
    Yadav, Anamika
    MEASUREMENT, 2019, 135 : 312 - 322
  • [8] Single-ended Protection Scheme for Multi-terminal Hybrid DC Lines Based on Initial Current Traveling Wave Phase
    Dai Z.
    Niu B.
    Qiu H.
    Xi X.
    Han Z.
    Wei S.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (02): : 649 - 659
  • [9] Parameter fitting-based traveling wave fault location method for multi-terminal DC grids
    Liu, Le
    Xie, Fan
    Kang, Xiaoning
    Hao, Zhiguo
    Lekic, Aleksandra
    Popov, Marjan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 164
  • [10] A multi-terminal traveling wave fault location method for active distribution network based on residual clustering
    Qiao, Jian
    Yin, Xianggen
    Wang, Yikai
    Xu, Wen
    Tan, Liming
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 131