In a sort-last polygon rendering system, the efficiency of image composition is very important for achieving fast rendering. In this paper, the implementation of a sort-last rendering system on a general purpose multicomputer system is described. A two-phase sort-last-full image composition scheme is described first, acid then many variants of it are presented for 2D mesh message-passing multicomputers, such as the Intel Delta and Paragon. All the proposed schemes are analyzed and experimentally evaluated on Caltech's Inter Delta machine for our sort-last parallel polygon renderer. Experimental results show that sort-last-sparse strategies are better suited than sort-last-full schemes for software implementation on a general purpose multicomputer system. Further, interleaved composition regions perform better than coherent regions. In a large multicomputer system, performance can be improved by carefully scheduling the tasks of rendering and communication. Using 512 processors to render our test scenes, the peak rendering rate achieved on a 262,144 triangle dataset is close to 4.6 million triangles per second which is comparable to the speed of current state-of-the-art graphics workstations.