Frequency-domain optical coherence tomography with undetected mid-infrared photons

被引:59
作者
Vanselow, Aron [1 ,4 ]
Kaufmann, Paul [1 ]
Zorin, Ivan [2 ]
Heise, Bettina [2 ]
Chrzanowski, Helen M. [1 ]
Ramelow, Sven [1 ,3 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Res Ctr Nondestruct Testing GmbH, Sci Pk 2,Altenberger Str 69, A-4040 Linz, Austria
[3] Humboldt Univ, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[4] Inria Paris, Quant Team, 2 Rue Simone Iff, F-75012 Paris, France
来源
OPTICA | 2020年 / 7卷 / 12期
关键词
HIGH-SPEED; OCT; DISPERSION; RESOLUTION;
D O I
10.1364/OPTICA.400128
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mid-infrared (mid-IR) light scatters much less than shorter wavelengths, allowing greatly enhanced penetration depths for optical imaging techniques such as optical coherence tomography (OCT). However, both detection and broadband sources in the mid-IR are technologically challenging. Interfering entangled photons in a nonlinear interferometer enables sensing with undetected photons, making mid-IR sources and detectors obsolete. Here we implement mid-IR frequency-domain OCT based on ultra-broadband entangled photon pairs spanning from 3.3 to 4.3 mu m. We demonstrate 10 mu m axial and 20 mu m lateral resolution 2D and 3D imaging of strongly scattering ceramic and paint samples. By intrinsically being limited only by shot noise, we observe 10(6) times more sensitivity per integration time and power of the probe light. Together with the vastly reduced footprint and technical complexity, our technique can outperform conventional approaches with classical mid-IR light sources. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1729 / 1736
页数:8
相关论文
共 53 条
  • [1] Abouraddy A. F., 2002, PHYS REV A, V65, P2278
  • [2] [Anonymous], 2013, HDB COHERENT DOMAIN
  • [3] Recovering distance information in spectral domain interferometry
    Bradu, Adrian
    Israelsen, Niels Moller
    Maria, Michael
    Marques, Manuel J.
    Rivet, Sylvain
    Feuchter, Thomas
    Bang, Ole
    Podoleanu, Adrian
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [4] Demonstration of tolerance to dispersion of master/slave interferometry
    Bradu, Adrian
    Maria, Michael
    Podoleanu, Adrian Gh.
    [J]. OPTICS EXPRESS, 2015, 23 (11): : 14148 - 14161
  • [5] Nonlinear interferometers in quantum optics
    Chekhova, M. V.
    Ou, Z. Y.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2016, 8 (01): : 104 - 155
  • [6] Sensitivity advantage of swept source and Fourier domain optical coherence tomography
    Choma, MA
    Sarunic, MV
    Yang, CH
    Izatt, JA
    [J]. OPTICS EXPRESS, 2003, 11 (18): : 2183 - 2189
  • [7] Mid-infrared optical coherence tomography
    Colley, Christopher S.
    Hebden, Jeremy C.
    Delpy, David T.
    Cambrey, Alison D.
    Brown, Robert A.
    Zibik, Evgeny A.
    Ng, Wing H.
    Wilson, Luke R.
    Cockburn, John W.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (12)
  • [8] Spatial entanglement and optimal single-mode coupling
    Grice, W. P.
    Bennink, R. S.
    Goodman, D. S.
    Ryan, A. T.
    [J]. PHYSICAL REVIEW A, 2011, 83 (02):
  • [9] High-resolution mid-IR spectrometer based on frequency upconversion
    Hu, Qi
    Dam, Jeppe Seidelin
    Pedersen, Christian
    Tidemand-Lichtenberg, Peter
    [J]. OPTICS LETTERS, 2012, 37 (24) : 5232 - 5234
  • [10] OPTICAL COHERENCE TOMOGRAPHY
    HUANG, D
    SWANSON, EA
    LIN, CP
    SCHUMAN, JS
    STINSON, WG
    CHANG, W
    HEE, MR
    FLOTTE, T
    GREGORY, K
    PULIAFITO, CA
    FUJIMOTO, JG
    [J]. SCIENCE, 1991, 254 (5035) : 1178 - 1181