Genuinely multipartite entangled states and orthogonal arrays

被引:130
作者
Goyeneche, Dardo [1 ,2 ]
Zyczkowski, Karol [3 ,4 ]
机构
[1] Univ Concepcion, Dept Fis, Concepcion, Chile
[2] Univ Concepcion, Ctr Opt & Photon, Concepcion, Chile
[3] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[4] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 02期
关键词
Error correction - Quantum entanglement;
D O I
10.1103/PhysRevA.90.022316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, which we call a k-uniform state, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudit Greenberger-Horne-Zeilinger states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N > 5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Furthermore, we establish links between the existence of k-uniform states and classical and quantum error correction codes and provide a graph representation for such states.
引用
收藏
页数:18
相关论文
共 57 条
[1]   Vertex embeddings of regular polytopes [J].
Adams, J ;
Zvengrowski, P ;
Laird, P .
EXPOSITIONES MATHEMATICAE, 2003, 21 (04) :339-353
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]  
[Anonymous], 1999, Springer Series in Statistics, DOI DOI 10.1007/978-1-4612-1478-6
[4]   Exploring pure quantum states with maximally mixed reductions [J].
Arnaud, Ludovic ;
Cerf, Nicolas J. .
PHYSICAL REVIEW A, 2013, 87 (01)
[5]   Quantum error detection II: Bounds [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :789-800
[6]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[7]   Some entanglement features of highly entangled multiqubit states [J].
Borras, A. ;
Casas, M. ;
Plastino, A. R. ;
Plastino, A. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 :605-611
[8]   Multiqubit systems: highly entangled states and entanglement distribution [J].
Borras, A. ;
Plastino, A. R. ;
Batle, J. ;
Zander, C. ;
Casas, M. ;
Plastino, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) :13407-13421
[9]   On maximal entanglement between two pairs in four-qubit pure states [J].
Brierley, S. ;
Higuchi, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) :8455-8465
[10]   Searching for highly entangled multi-qubit states [J].
Brown, IDK ;
Stepney, S ;
Sudbery, A ;
Braunstein, SL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05) :1119-1131