DISCRETE FIXED POINT THEOREMS AND THEIR APPLICATION TO NASH EQUILIBRIUM

被引:7
作者
Sato, Jun-ichi [1 ]
Kawasaki, Hidefumi [2 ]
机构
[1] Kyushu Univ, Grad Sch Math, Higashi Ku, Fukuoka 8128581, Japan
[2] Kyushu Univ, Fac Math, Higashi Ku, Fukuoka 8128581, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 2A期
基金
日本学术振兴会;
关键词
Discrete fixed point theorem; Pure strategy; Nash equilibrium; n-person non-cooperative game; Bimatrix game;
D O I
10.11650/twjm/1500405347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present discrete fixed point theorems. They are based on monotonicity of the mapping. We apply them to a non-cooperative n-person game and give an existence theorem of a Nash equilibrium of pure strategies. As a special case, we consider bimatrix games.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1982, Game theory
[2]   Discrete fixed point theorem reconsidered [J].
Iimura, T ;
Murota, K ;
Tamura, A .
JOURNAL OF MATHEMATICAL ECONOMICS, 2005, 41 (08) :1030-1036
[3]   A discrete fixed point theorem and its applications [J].
Iimura, T .
JOURNAL OF MATHEMATICAL ECONOMICS, 2003, 39 (07) :725-742
[4]  
Murota K, 2003, SIAM MONOGRAPHS DISC
[5]   An extension of a combinatorial fixed point theorem of Shih and Dong [J].
Richard, Adrien .
ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (04) :620-627
[6]   A combinatorial analogue of the Jacobian problem in automata networks [J].
Shih, MH ;
Dong, JL .
ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (01) :30-46
[7]   A COMBINATORIAL LEFSCHETZ FIXED-POINT FORMULA [J].
SHIH, MH ;
LEE, SN .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 61 (01) :123-129
[8]   COMBINATORIAL FORMULAS FOR MULTIPLE SET-VALUED LABELINGS [J].
SHIH, MH ;
LEE, SN .
MATHEMATISCHE ANNALEN, 1993, 296 (01) :35-61
[9]  
Tarski A., 1955, Pacific Journal of Mathematics, V5, P285, DOI DOI 10.2140/PJM.1955.5.285
[10]  
YANG Z, 2004, 210 FBA YOK NAT U