Existence of quasi-periodic solutions of the real pendulum equation

被引:5
作者
Lu, Lin [1 ]
Li, Xuemei [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
关键词
INVARIANT TORI; COMPLEX DYNAMICS; KAM THEOREM; PERSISTENCE; REDUCIBILITY;
D O I
10.1016/j.chaos.2014.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The pendulum equation x = -delta x -delta x (1 + f(o) cos omega(1)t) sinx +f(1), sin omega(2)t is considered in this paper, where f(o),f(1) and delta are small real parameters, the ratio of oh and oh is irrational, and frequencies omega(1), and omega(2) satisfy the Diophantine condition. The unperturbed system (f(o) = f(1) = delta = 0) has several fixed points for different parameter alpha. We use KAM theory to prove that the perturbed system possesses quasi-periodic solutions in neighborhoods of those fixed points. (c) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 33 条
  • [1] Bogoljubov N.N., 1976, The Method of Accelerated Convergence in Nonlinear Mechanics
  • [2] Bourgain J., 1994, INT MATH RES NOTICES, V1994, p475ff
  • [3] Normal linear stability of quasi-periodic tori
    Broer, H. W.
    Hoo, J.
    Naudot, V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 355 - 418
  • [4] Nearly-integrable dissipative systems and celestial mechanics
    Celletti, A.
    Di Ruzza, S.
    Lhotka, C.
    Stefanelli, L.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 186 (01) : 33 - 66
  • [5] Chen X, 2012, INT J BIFURCAT CHAOS, V22
  • [6] Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation
    Chung, K. W.
    Yuan, Xiaoping
    [J]. NONLINEARITY, 2008, 21 (03) : 435 - 451
  • [7] APPROXIMATING THE ESCAPE ZONE FOR THE PARAMETRICALLY EXCITED PENDULUM
    CLIFFORD, MJ
    BISHOP, SR
    [J]. JOURNAL OF SOUND AND VIBRATION, 1994, 172 (04) : 572 - 576
  • [8] ROTATING PERIODIC-ORBITS OF THE PARAMETRICALLY EXCITED PENDULUM
    CLIFFORD, MJ
    BISHOP, SR
    [J]. PHYSICS LETTERS A, 1995, 201 (2-3) : 191 - 196
  • [9] Positive quasi-periodic solutions to Lotka-Volterra system
    Cong HongZi
    Mi LuFang
    Yuan XiaoPing
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1151 - 1160
  • [10] CHAOTIC STATES AND ROUTES TO CHAOS IN THE FORCED PENDULUM
    DHUMIERES, D
    BEASLEY, MR
    HUBERMAN, BA
    LIBCHABER, A
    [J]. PHYSICAL REVIEW A, 1982, 26 (06): : 3483 - 3496