LQG/LTR procedure using reduced-order Kalman filters

被引:1
作者
Ishihara, T. [1 ]
Zheng, L. A. [2 ]
机构
[1] Fuksushima Univ, Fac Sci & Technol, Dept Mechatron, Fuksushima, Japan
[2] Natl Kaohsiung Univ Appl Sci, Dept Mech Engn, Kaohsiung, Taiwan
关键词
Linear multivariable systems; linear-quadratic-Gaussian controllers; reduced-order Kalman filters; loop transfer recovery; LOOP TRANSFER RECOVERY; DISTURBANCE CANCELLATION; SYSTEMS; DESIGN; PERFECT; CONTROLLERS;
D O I
10.1080/00207179.2017.1359673
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses a linear-quadratic-Gaussian/loop transfer recovery (LQG/LTR) procedure using reduced-order Kalman filters by extending known exact-recovery result. The state-space realisation commonly used for reduced-order observer design is employed. The zero structure intrinsic to the realisation is revealed. Asymptotic recovery is achieved using a non-singular reduced-order Kalman filter with a parameterised set of covariance matrices. The proposed procedure provides a systematic method for directly designing reduced-order LQG controllers without additional coordinate transformations. A numerical design example for a simple multivariable plant is presented to compare the proposed design with the standard LQG/LTR design using a full-order Kalman filter.
引用
收藏
页码:461 / 475
页数:15
相关论文
共 50 条
  • [41] Reduced-order observer based output feedback control for a Timoshenko beam
    Meng, Tingting
    Wang, Jiubin
    Fu, Qiang
    He, Xiuyu
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (06) : 1401 - 1417
  • [43] Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy
    Nicolaidou, Evangelia
    Hill, Thomas L.
    Neild, Simon A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2243):
  • [44] Feedback Stabilization of Fluids Using Reduced-Order Models for Control and Compensator Design
    Borggaard, Jeff
    Gugercin, Serkan
    Zietsman, Lizette
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 7579 - 7585
  • [45] Improved Reduced-Order Modeling Using Clustering Method with Dominant Pole Retention
    Tiwari, Sharad Kumar
    Kaur, Gagandeep
    IETE JOURNAL OF RESEARCH, 2020, 66 (01) : 42 - 52
  • [46] Normalized Coprime Robust Stability and Performance Guarantees for Reduced-Order Controllers
    Chen, Kevin K.
    Rowley, Clarence W.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (04) : 1068 - 1073
  • [47] Reduced-order control using low-rank dynamic mode decomposition
    Sashittal, Palash
    Bodony, Daniel J.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (06) : 603 - 623
  • [48] OPTIMISATION OF AN ORC RADIAL TURBINE USING A REDUCED-ORDER MODEL COUPLED WITH CFD
    Alvarez-Regueiro, Eva
    Yang, Bijie
    Barrera-Medrano, Esperanza
    Martinez-Botas, Ricardo
    Rajoo, Srithar
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 4, 2022,
  • [49] Reduced-Order H∞ Filters for Uncertain 2-D Continuous Systems, Via LMIs and Polynomial Matrices
    El-Kasri, Chakir
    Hmamed, Abdelaziz
    Tadeo, Fernando
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (04) : 1189 - 1214
  • [50] Extended operating range for reduced-order model of lithium-ion cells
    Lee, James L.
    Aldrich, Lukas L.
    Stetzel, Kirk D.
    Plett, Gregory L.
    JOURNAL OF POWER SOURCES, 2014, 255 : 85 - 100