Secret key rates for an encoded quantum repeater

被引:21
作者
Bratzik, Sylvia [1 ]
Kampermann, Hermann [1 ]
Bruss, Dagmar [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
关键词
ATOMIC ENSEMBLES; NOISY CHANNELS; LINEAR OPTICS; CRYPTOGRAPHY; ENTANGLEMENT; COMMUNICATION; TELEPORTATION; PURIFICATION; OPERATIONS; SECURITY;
D O I
10.1103/PhysRevA.89.032335
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate secret key rates for the quantum repeater using encoding [L. Jiang et al., Phys. Rev. A 79, 032325 (2009)] and compare them to the standard repeater scheme by Briegel, Dur, Cirac, and Zoller. The former scheme has the advantage of a minimal consumption of classical communication. We analyze the trade-off in the secret key rate between the communication time and the required resources. For this purpose we introduce an error model for the repeater using encoding which allows for input Bell states with a fidelity smaller than one, in contrast to the model given by L. Jiang et al. [Phys. Rev. A 79, 032325 (2009)]. We show that one can correct additional errors in the encoded connection procedure of this repeater and develop a suitable decoding algorithm. Furthermore, we derive the rate of producing entangled pairs for the quantum repeater using encoding and give the minimal parameter values (gate quality and initial fidelity) for establishing a nonzero secret key. We find that the generic quantum repeater is optimal regarding the secret key rate per memory per second and show that the encoded quantum repeater using the simple three-qubit repetition code can even have an advantage with respect to the resources compared to other recent quantum repeater schemes with encoding.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Finite-range multiplexing enhances quantum key distribution via quantum repeaters [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[2]   Measurement-device-independent quantum key distribution with quantum memories [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[3]   Quantum repeaters and quantum key distribution: Analysis of secret-key rates [J].
Abruzzo, Silvestre ;
Bratzik, Sylvia ;
Bernardes, Nadja K. ;
Kampermann, Hermann ;
van Loock, Peter ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2013, 87 (05)
[4]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[5]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[6]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[7]   Rate analysis for a hybrid quantum repeater [J].
Bernardes, Nadja K. ;
Praxmeyer, Ludmila ;
van Loock, Peter .
PHYSICAL REVIEW A, 2011, 83 (01)
[8]   Quantum repeaters and quantum key distribution: The impact of entanglement distillation on the secret key rate [J].
Bratzik, Sylvia ;
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2013, 87 (06)
[9]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[10]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021