Optimization of neural network with wavelet transform and improved data selection using bat algorithm for short-term load forecasting

被引:60
|
作者
Bento, P. M. R. [1 ,3 ]
Pombo, J. A. N. [1 ,3 ]
Calado, M. R. A. [2 ,3 ]
Mariano, S. J. P. S. [1 ,3 ]
机构
[1] Univ Beira Interior, Covilha, Portugal
[2] Univ Beira Interior, Dept Electromech Engn, Covilha, Portugal
[3] Inst Telecomunicacoes, Covilha, Portugal
关键词
Artificial neural networks; Improved data selection; Features extraction; Wavelet transform; Bat algorithm; Short-term load forecast; FEATURE-EXTRACTION; ELECTRICITY PRICE; PREDICTION; ARIMA;
D O I
10.1016/j.neucom.2019.05.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term load forecasting is very important for reliable power system operation, even more so under electricity market deregulation and integration of renewable resources framework. This paper presents a new enhanced method for one day ahead load forecast, combing improved data selection and features extraction techniques (similar/recent day-based selection, correlation and wavelet analysis), which brings more "regularity" to the load time-series, an important precondition for the successful application of neural networks. A combination of Bat and Scaled Conjugate Gradient Algorithms is proposed to improve neural network learning capability. Another feature is the method's capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing using the Portuguese national system load, and the regional (state) loads of New England and New York, revealed promising forecasting results in comparison with other state-of-the-art methods, therefore proving the effectiveness of the assembled methodology. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 71
页数:19
相关论文
共 50 条
  • [41] Short-term electric load forecasting using neural networks
    Ramezani, M
    Falaghi, H
    Haghifam, MR
    Shahryari, GA
    Eurocon 2005: The International Conference on Computer as a Tool, Vol 1 and 2 , Proceedings, 2005, : 1525 - 1528
  • [42] Forecasting Short-Term Traffic Flow by Fuzzy Wavelet Neural Network with Parameters Optimized by Biogeography-Based Optimization Algorithm
    Chen, Jeng-Fung
    Lo, Shih-Kuei
    Do, Quang Hung
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [43] The Load Forecasting Using the PSO-BP Neural Network and Wavelet Transform
    Liu Mengliang
    Gao Rong
    Wang Xiuhong
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 4, 2008, : 34 - +
  • [44] Research on Power Load Forecasting Using Deep Neural Network and Wavelet Transform
    Tan, Xiangyu
    Ao, Gang
    Qian, Guochao
    Zhou, Fangrong
    Power, Wenyun Li
    Liu, Chuanbin
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 16 (02)
  • [45] Confidence intervals for neural network based short-term load forecasting
    da Silva, AP
    Moulin, LS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (04) : 1191 - 1196
  • [46] Short-Term Load Forecasting with Neural Network Ensembles: A Comparative Study
    De Felice, Matteo
    Yao, Xin
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2011, 6 (03) : 47 - 56
  • [47] Short term load forecasting using artificial neural network
    Banda, E.
    Folly, K. A.
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 108 - 112
  • [48] An artificial neural network hybrid with wavelet transform for short-term wind speed forecasting: A preliminary case study
    Yousefi, Moslem
    Hooshyar, Danial
    Yousefi, Milad
    Khaksar, Weria
    Sahari, Khairul Salleh Mohamed
    Alnaimi, Firas B. Ismail
    2015 INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH), 2015, : 95 - 99
  • [49] A Short-Term Load Forecasting Model Based on Self-Adaptive Momentum Factor and Wavelet Neural Network in Smart Grid
    Zulfiqar, Muhammad
    Kamran, Muhammad
    Babar Rasheed, Muhammad
    Alquthami, Thamer
    Milyani, Ahmad H.
    IEEE ACCESS, 2022, 10 : 77587 - 77602
  • [50] Short-term Traffic Flow Forecasting Model Based on Wavelet Neural Network
    Gao, Junwei
    Leng, Ziwen
    Qin, Yong
    Ma, Zengtao
    Liu, Xin
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 5081 - 5084