A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations

被引:10
作者
Barles, Guy [1 ]
Ishii, Hitoshi [2 ,3 ]
Mitake, Hiroyoshi [4 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, UMR 7350,FR 2964, F-37200 Tours, France
[2] Waseda Univ, Fac Educ & Integrated Arts & Sci, Shinjuku Ku, Tokyo 1698050, Japan
[3] King Abdulaziz Univ, Fac Sci, Jeddah 21589, Saudi Arabia
[4] Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
关键词
Asymptotic behavior; Hamilton-Jacobi equations; PDE approach; EUCLIDEAN-N-SPACE; BEHAVIOR;
D O I
10.1007/s13373-013-0036-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new PDE approach to establishing the large time asymptotic behavior of solutions of Hamilton-Jacobi equations, which modifies and simplifies the previous ones (Barles et al. in Arch Ration Mech Anal 204(2):515-558, 2012; Barles and Souganidis in SIAM J Math Anal 31(4):925-939, 2000), under a refined "strict convexity" assumption on the Hamiltonians. Not only such "strict convexity" conditions generalize the corresponding requirements on the Hamiltonians in Barles and Souganidis (SLAM J Math Anal 31(4):925-939, 2000), but also one of the most refined our conditions covers the situation studied in Namah and Roquejoffre (Commun Partial Differ Equ 24(5-6):883-893, 1999).
引用
收藏
页码:363 / 388
页数:26
相关论文
共 19 条
[1]  
BARLES G, 1985, ANN I H POINCARE-AN, V2, P21
[2]   On the large time behavior of solutions of Hamilton-Jacobi equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :925-939
[3]  
Barles G., 1994, MATH APPL BERLIN, V17
[4]   On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations Associated with Nonlinear Boundary Conditions [J].
Barles, Guy ;
Ishii, Hitoshi ;
Mitake, Hiroyoshi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (02) :515-558
[5]   A PDE Approach to Large-Time Asymptotics for Boundary-Value Problems for Nonconvex Hamilton-Jacobi Equations [J].
Barles, Guy ;
Mitake, Hiroyoshi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (01) :136-168
[6]  
Cagnetti F., ARXIV12124694
[7]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[8]   A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations [J].
Davini, Andrea ;
Siconolfi, Antonio .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) :478-502
[9]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[10]   Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space [J].
Fujita, Yasuhiro ;
Ishii, Hitoshi ;
Loreti, Paola .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (05) :1671-1700