Global bifurcation techniques for Yamabe type equations on Riemannian manifolds

被引:9
作者
Betancourt de la Parra, Alejandro [1 ]
Julio-Batalla, Jurgen [1 ]
Petean, Jimmy [1 ]
机构
[1] CIMAT, Ctr Invest Matemat, Calle Jalisco S-N, Guanajuato 36023, Guanajuato, Mexico
关键词
Yamabe type equations; Global bifurcation; NONLINEAR ELLIPTIC-EQUATIONS; ISOPARAMETRIC HYPERSURFACES; POSITIVE SOLUTIONS; SCALAR CURVATURE; METRICS; GEOMETRY; SPHERES;
D O I
10.1016/j.na.2020.112140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a closed Riemannian manifold (M-n, g) of dimension n >= 3 and study positive solutions of the equation -Delta(g)u + lambda u = lambda u(q), with lambda > 0, q > 1. If M supports a proper isoparametric function with focal varieties M-1, M-2 of dimension d(1) >= d(2) we show that for any q < n-d(2)+2/n-d(2)-2 the number of positive solutions of the equation -Delta(g)u+ lambda u = lambda u(q) tends to infinity as lambda -> +infinity. We apply this result to prove multiplicity results for positive solutions of critical and supercritical equations. We also obtain multiplicity results for the Yamabe equation on Riemannian manifolds. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 47 条
[1]  
Ambrosetti A, 2007, CAM ST AD M, V104, P1, DOI 10.1017/CBO9780511618260
[2]  
[Anonymous], 1938, ATTI ACCAD NAZ LIN
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[5]  
BESSE AL, 1978, ERGEBNISSE MATH IHRE, V93
[6]   Four-dimensional cohomogeneity one Ricci flow and nonnegative sectional curvature [J].
Bettiol, Renato G. ;
Krishnan, Anusha M. .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (03) :511-527
[7]   MULTIPLICITY OF SOLUTIONS TO THE YAMABE PROBLEM ON COLLAPSING RIEMANNIAN SUBMERSIONS [J].
Bettiol, Renato G. ;
Piccione, Paolo .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 266 (01) :1-21
[8]   Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres [J].
Bettiol, Renato G. ;
Piccione, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) :789-807
[9]   NONLINEAR ELLIPTIC-EQUATIONS ON COMPACT RIEMANNIAN-MANIFOLDS AND ASYMPTOTICS OF EMDEN EQUATIONS [J].
BIDAUTVERON, MF ;
VERON, L .
INVENTIONES MATHEMATICAE, 1991, 106 (03) :489-539
[10]  
BOREL A, 1950, CR HEBD ACAD SCI, V230, P1378