Exploring low temperature oxidation of 1-butene in jet-stirred reactors

被引:17
作者
Chen, Bingjie [1 ,2 ]
Ilies, Bogdan Dragos [1 ]
Chen, Weiye [3 ]
Xu, Qiang [4 ]
Li, Yang [1 ]
Xing, Lili [5 ]
Yang, Jiuzhong [3 ]
Wei, Lixia [4 ]
Hansen, Nils [6 ]
Pitsch, Heinz [2 ]
Sarathy, S. Mani [1 ]
Wang, Zhandong [3 ,7 ]
机构
[1] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia
[2] Rhein Westfal TH Aachen, Inst Combust Technol, Templergraben 64, D-52056 Aachen, Germany
[3] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
[4] Guangxi Univ, Coll Mech Engn, Nanning 530004, Guangxi, Peoples R China
[5] Henan Univ Sci & Technol, Energy & Power Engn Inst, Luoyang 471003, Henan, Peoples R China
[6] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA
[7] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
1-butene; Low temperature oxidation; Waddington pathway; Second O-2 addition; Jet-stirred reactor; LAMINAR FLAME SPEEDS; COMBUSTION; IGNITION; ALKENES; RADICALS; GASOLINE; O-2;
D O I
10.1016/j.combustflame.2020.08.051
中图分类号
O414.1 [热力学];
学科分类号
摘要
1-butene is an important intermediate in combustion of various hydrocarbon fuels and oxygenated biofuels (e.g., butanol). Understanding its oxidation chemistry can help improve ignition and combustion process in advanced engines and provide better emission control. This work addresses a discrepancy between experiments and simulations in 1-butene oxidation at low temperatures, wherein simulations with AramcoMech 3.0 model show greater fuel reactivity than experiments. To further explore 1-butene low temperature reaction pathways from 550 to 910 K, experiments were conducted in three jet-stirred reactors: two coupled to time-of-flight molecular beam mass spectrometers with synchrotron vacuum ultraviolet radiation as the photoionization source, and one coupled to gas chromatography mass spectrometer. Isomeric structure identification, comprehensive species datasets, and reactor cross examinations are provided by the combination of three experiments. The identified isomer-resolved species provide evidence of various 1-butene low temperature reaction pathways. For example, the identification of propanal confirms the Waddington reaction pathway. The kinetic model over-predicts fuel reactivity in the low temperature regime (550-700 K). Updating the rate coefficients of key reactions in the Waddington pathways, e.g., forward and reverse isomerization of hydroxyl-butyl-peroxide to butoxyl-peroxide and Waddington decomposition of butoxyl-peroxide reduces the discrepancies. The role of rate constant updates in each step of the Waddington pathway is evaluated and discussed to provide directions for future model development. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:259 / 271
页数:13
相关论文
共 35 条
[1]  
[Anonymous], 2017, P NATL ACAD SCI
[2]   Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates [J].
Battin-Leclerc, F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (04) :440-498
[3]  
Chakir A., 1989, Proc. Combust. Inst, V22, P873
[4]   Exploring gasoline oxidation chemistry in jet stirred reactors [J].
Chen, Bingjie ;
Wang, Zhandong ;
Wang, Jui-Yang ;
Wang, Haoyi ;
Togbe, Casimir ;
Alonso, Pablo Emmanuel Alvarez ;
Almalki, Maram ;
Mehl, Marco ;
Pitz, William J. ;
Wagnon, Scott W. ;
Zhang, Kuiwen ;
Kukkadapu, Goutham ;
Dagaut, Philippe ;
Sarathy, S. Mani .
FUEL, 2019, 236 :1282-1292
[5]   Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels [J].
Chen, Bingjie ;
Togbe, Casimir ;
Wang, Zhandong ;
Dagaut, Philippe ;
Sarathy, S. Mani .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (01) :517-524
[6]   Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons [J].
Davis, SG ;
Law, CK .
COMBUSTION SCIENCE AND TECHNOLOGY, 1998, 140 (1-6) :427-449
[7]   A large source of low-volatility secondary organic aerosol [J].
Ehn, Mikael ;
Thornton, Joel A. ;
Kleist, Einhard ;
Sipila, Mikko ;
Junninen, Heikki ;
Pullinen, Iida ;
Springer, Monika ;
Rubach, Florian ;
Tillmann, Ralf ;
Lee, Ben ;
Lopez-Hilfiker, Felipe ;
Andres, Stefanie ;
Acir, Ismail-Hakki ;
Rissanen, Matti ;
Jokinen, Tuija ;
Schobesberger, Siegfried ;
Kangasluoma, Juha ;
Kontkanen, Jenni ;
Nieminen, Tuomo ;
Kurten, Theo ;
Nielsen, Lasse B. ;
Jorgensen, Solvejg ;
Kjaergaard, Henrik G. ;
Canagaratna, Manjula ;
Dal Maso, Miikka ;
Berndt, Torsten ;
Petaja, Tuukka ;
Wahner, Andreas ;
Kerminen, Veli-Matti ;
Kulmala, Markku ;
Worsnop, Douglas R. ;
Wildt, Juergen ;
Mentel, Thomas F. .
NATURE, 2014, 506 (7489) :476-+
[8]   Experimental and Modeling Study of the Oxidation of 1-Butene and cis-2-Butene in a Jet-Stirred Reactor and a Combustion Vessel [J].
Fenard, Yann ;
Dayma, Guillaume ;
Halter, Fabien ;
Foucher, Fabrice ;
Serinyel, Zeynep ;
Dagaut, Philippe .
ENERGY & FUELS, 2015, 29 (02) :1107-1118
[9]   Theoretical Kinetic Study of the Unimolecular Keto-Enol Tautomerism Propen-2-ol ←→ Acetone. Pressure Effects and Implications in the Pyrolysis of &ITtert&IT- and 2-Butanol [J].
Grajales-Gonzalez, E. ;
Monge-Palacios, M. ;
Sarathy, S. Mani .
JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (14) :3547-3555
[10]   Detailed product analysis during the low temperature oxidation of n-butane [J].
Herbinet, Olivier ;
Battin-Leclerc, Frederique ;
Bax, Sarah ;
Le Gall, Herve ;
Glaude, Pierre-Alexandre ;
Fournet, Rene ;
Zhou, Zhongyue ;
Deng, Liulin ;
Guo, Huijun ;
Xie, Mingfeng ;
Qi, Fei .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (01) :296-308