Galois level and congruence ideal for p-adic families of finite slope Siegel modular forms

被引:3
作者
Conti, Andrea [1 ,2 ]
机构
[1] Concordia Univ, Dept Math & Stat, 1400 De Maisonneuve Blvd West, Montreal, PQ H3G 1M8, Canada
[2] Heidelberg Univ, IWR, Computat Arithmet Geometry, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
Siegel modular forms; eigenvarieties; Galois representations; big image; congruence ideal; trianguline representations; REPRESENTATIONS; CHARACTERS; PRODUCTS; IMAGE;
D O I
10.1112/S0010437X19007048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider families of Siegel eigenforms of genus 2 and finite slope, defined as local pieces of an eigenvariety and equipped with a suitable integral structure. Under some assumptions on the residual image, we show that the image of the Galois representation associated with a family is big, in the sense that a Lie algebra attached to it contains a congruence subalgebra of non-zero level. We call the Galois level of the family the largest such level. We show that it is trivial when the residual representation has full image. When the residual representation is a symmetric cube, the zero locus defined by the Galois level of the family admits an automorphic description: it is the locus of points that arise from overconvergent eigenforms for GL(2), via a p-adic Langlands lift attached to the symmetric cube representation. Our proof goes via the comparison of the Galois level with a 'fortuitous' congruence ideal. Some of the p-adic lifts are interpolated by a morphism of rigid analytic spaces from an eigencurve for GL(2) to an eigenvariety for GSp(4), while the remainder appear as isolated points on the eigenvariety.
引用
收藏
页码:776 / 831
页数:56
相关论文
共 52 条
[1]   p-adic families of Siegel modular cuspforms [J].
Andreatta, Fabrizio ;
Iovita, Adrian ;
Pilloni, Vincent .
ANNALS OF MATHEMATICS, 2015, 181 (02) :623-697
[2]   TWISTING OF SIEGEL MODULAR FORMS WITH CHARACTERS, AND L-FUNCTIONS [J].
Andrianov, A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (06) :851-871
[3]  
Andrianov A. N., 1987, GRUNDLEHREN MATH WIS, V286, DOI DOI 10.1007/978-3-642-70341-6
[4]  
[Anonymous], 2009, ASTERISQUE
[5]  
Bellaiche J., 2012, EIGENVARIETIES ADJOI
[6]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[7]   Trianguline representations [J].
Berger, Laurent .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :619-635
[8]  
Berger Laurent, 2010, J THEOR NOMBR BORDX, V22, P557
[9]   Classicity for overconvergent modular forms [J].
Bijakowski, Stephane ;
Pilloni, Vincent ;
Stroh, Benoit .
ANNALS OF MATHEMATICS, 2016, 183 (03) :975-1014
[10]  
Bosch S., 1984, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V261, DOI [DOI 10.1007/978-3-642-52229-1, 10.1007/978-3-642-52229-1]