Initiated chemical vapor deposition of polyvinylpyrrolidone-based thin films

被引:64
|
作者
Chan, Kelvin [1 ]
Kostun, Lara E. [1 ]
Tenhaeff, Wyatt E. [1 ]
Gleason, Karen K. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
chemical vapor deposition; polyvinylpyrrolidone; polymer thin films;
D O I
10.1016/j.polymer.2006.07.068
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Initiated chemical vapor deposition (iCVD) is used for the, first time to deposit a non-acrylic carbon-based polymer, polyvinylpyrrolidone (PVP). PVP is known for its hydrophilicity and biocompatibility, and its thin films have found many applications in the biomedical community, one of which is as antibiofouling surfaces. From vapors of 1-vinyl-2-pyrrolidone (VP) and tert-butyl peroxide (TBPO), iCVD produces PVP thin films that are spectroscopically identical to bulk PVP without using any solvents. iCVD works by selectively fragmenting gaseous TBPO with heat to create radicals for initiation of polymerization. This selectivity ensures that the monomer VP does not disintegrate to form species that do not conform to the structure of PVP. Fourier-transform infrared (FTIR), nuclear magnetic resonance, and X-ray photoelectron spectroscopy (XPS) show full retention of the hydrophilic pyrrolidone functional group. Number-average molecular weights range between 6570 and 10,200 g/mol. The addition of ethylene glycol diacrylate (EGDA) vapor to the reaction mixture creates a cross-linked copolymer between VP and EGDA. Films with different degrees of cross-linking can be made depending on the partial pressures of the species. Methods for quantifying the relative incorporation of VP and EGDA using FTIR and XPS are introduced. The film with the lowest degree of cross-linking has a wetting angle of 11 degrees, affirming its high hydrophilicity and iCVD's ability to retain functionality. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6941 / 6947
页数:7
相关论文
共 50 条
  • [31] Properties of chemical-vapor-deposition-prepared MgB2 thin films
    Wang, SF
    Zhou, YL
    Zhu, YB
    Liu, Z
    Zhang, Q
    Chen, ZH
    Lu, HB
    Dai, SY
    Yang, GZ
    THIN SOLID FILMS, 2003, 443 (1-2) : 120 - 123
  • [32] BiFeO3 thin films prepared using metalorganic chemical vapor deposition
    Kartavtseva, M. S.
    Gorbenko, O. Yu.
    Kaul, A. R.
    Murzina, T. V.
    Savinov, S. A.
    Barthelemy, A.
    THIN SOLID FILMS, 2007, 515 (16) : 6416 - 6421
  • [33] Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate
    Maruyama, T
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 56 (01) : 85 - 92
  • [34] Metalorganic chemical vapor deposition of SrxTiyQz thin films by using mixed metal precursors
    Heo, JS
    Ryu, HK
    Cho, YS
    Kim, JC
    Moon, SH
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2006, 23 (01) : 153 - 158
  • [35] Chemical vapor deposition of silicon nitride thin films from tris(diethylamino)chlorosilane
    Liu, XJ
    Pu, XP
    Li, HL
    Qiu, FG
    Huang, LP
    MATERIALS LETTERS, 2005, 59 (01) : 11 - 14
  • [36] Composition control of barium strontium titanate thin films prepared by chemical vapor deposition
    Kiyotoshi, M
    Eguchi, K
    Imai, K
    Arikado, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (08): : 4487 - 4492
  • [37] Chemical Vapor Deposition of Highly Conjugated, Transparent Boron Carbon Nitride Thin Films
    Giusto, Paolo
    Cruz, Daniel
    Heil, Tobias
    Tarakina, Nadezda
    Patrini, Maddalena
    Antonietti, Markus
    ADVANCED SCIENCE, 2021, 8 (17)
  • [38] Nitrogen incorporation in SnO2 thin films grown by chemical vapor deposition
    Jiang, Jie
    Lu, Yinmei
    Kramm, Benedikt
    Michel, Fabian
    Reindl, Christian T.
    Kracht, Max E.
    Klar, Peter J.
    Meyer, Bruno K.
    Eickhoff, Martin
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (06): : 1087 - 1092
  • [39] Chemical Vapor Deposition of Ferrimagnetic Fe3O4 Thin Films
    Lan, Feifei
    Zhou, Rui
    Qian, Ziyue
    Chen, Yuansha
    Xie, Liming
    CRYSTALS, 2022, 12 (04)
  • [40] Growth of bismuth titanate films by chemical vapor deposition and chemical solution deposition
    Neumayer, DA
    Duncombe, PR
    Laibowitz, RB
    Shaw, T
    Purtell, R
    Grill, A
    INTEGRATED FERROELECTRICS, 1998, 21 (1-4) : 331 - 341