Initiated chemical vapor deposition of polyvinylpyrrolidone-based thin films

被引:64
|
作者
Chan, Kelvin [1 ]
Kostun, Lara E. [1 ]
Tenhaeff, Wyatt E. [1 ]
Gleason, Karen K. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
chemical vapor deposition; polyvinylpyrrolidone; polymer thin films;
D O I
10.1016/j.polymer.2006.07.068
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Initiated chemical vapor deposition (iCVD) is used for the, first time to deposit a non-acrylic carbon-based polymer, polyvinylpyrrolidone (PVP). PVP is known for its hydrophilicity and biocompatibility, and its thin films have found many applications in the biomedical community, one of which is as antibiofouling surfaces. From vapors of 1-vinyl-2-pyrrolidone (VP) and tert-butyl peroxide (TBPO), iCVD produces PVP thin films that are spectroscopically identical to bulk PVP without using any solvents. iCVD works by selectively fragmenting gaseous TBPO with heat to create radicals for initiation of polymerization. This selectivity ensures that the monomer VP does not disintegrate to form species that do not conform to the structure of PVP. Fourier-transform infrared (FTIR), nuclear magnetic resonance, and X-ray photoelectron spectroscopy (XPS) show full retention of the hydrophilic pyrrolidone functional group. Number-average molecular weights range between 6570 and 10,200 g/mol. The addition of ethylene glycol diacrylate (EGDA) vapor to the reaction mixture creates a cross-linked copolymer between VP and EGDA. Films with different degrees of cross-linking can be made depending on the partial pressures of the species. Methods for quantifying the relative incorporation of VP and EGDA using FTIR and XPS are introduced. The film with the lowest degree of cross-linking has a wetting angle of 11 degrees, affirming its high hydrophilicity and iCVD's ability to retain functionality. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6941 / 6947
页数:7
相关论文
共 50 条
  • [1] Initiated chemical vapor deposition of poly(Hydroxypropyl methacrylate) thin films
    Sevgili, Emine
    Karaman, Mustafa
    THIN SOLID FILMS, 2019, 687
  • [2] Crosslinking of copolymer thin films by initiated chemical vapor deposition for hydrogel applications
    Tenhaeff, Wyatt E.
    Gleason, Karen K.
    THIN SOLID FILMS, 2009, 517 (12) : 3543 - 3546
  • [3] Kinetically Limited Bulk Polymerization of Polymer Thin Films by Initiated Chemical Vapor Deposition
    Prasath, Varun S.
    Lau, Kenneth K. S.
    MACROMOLECULES, 2023, 56 (24) : 10111 - 10118
  • [4] Effect of substrate temperature on initiated plasma enhanced chemical vapor deposition of PHEMA thin films
    Gursoy, Mehmet
    Karaman, Mustafa
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 12, NO 7, 2015, 12 (07): : 1006 - 1010
  • [5] Chemical vapor deposition of niobium disulfide thin films
    Carmalt, CJ
    Peters, ES
    Parkin, IP
    Manning, TD
    Hector, AL
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2004, (22) : 4470 - 4476
  • [6] Chemical Vapor Deposition of Elemental Crystallogen Thin Films
    Tomasini, Pierre
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2024, 13 (04)
  • [7] Chemical vapor deposition - based synthesis of conductive polydopamine thin-films
    Coskun, Halime
    Aljabour, Abdalaziz
    Uiberlacker, Lisa
    Strobel, Moritz
    Hild, Sabine
    Cobet, Christoph
    Farka, Dominik
    Stadler, Philipp
    Sariciftci, Niyazi Serdar
    THIN SOLID FILMS, 2018, 645 : 320 - 325
  • [8] Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films
    Karaman, Mustafa
    Cabuk, Nihat
    THIN SOLID FILMS, 2012, 520 (21) : 6484 - 6488
  • [9] Synthesis of Insulating and Semiconducting Polymer Films via Initiated Chemical Vapor Deposition
    Reeja-Jayan, B.
    Moni, Priya
    Gleason, Karen K.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2015, 7 (01) : 33 - 38
  • [10] CNx thin films prepared by laser chemical vapor deposition
    Falk, F
    Meinschien, J
    Mollekopf, G
    Schuster, K
    Stafast, H
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 46 (1-3): : 89 - 91