Advances in the profiling of N6-methyladenosine (m6A) modifications

被引:74
作者
Zheng, Hong-xiang [1 ]
Zhang, Xian-sheng [2 ]
Sui, Na [1 ]
机构
[1] Shandong Normal Univ, Coll Life Sci, Shandong Prov Key Lab Plant Stress, Jinan 250014, Shandong, Peoples R China
[2] Shandong Agr Univ, Coll Life Sci, State Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China
基金
国家重点研发计划;
关键词
N-6-methyladenosine; m(6)A-mapping; Next-generation sequencing; SMRT; Nanopore DRS; SINGLE-NUCLEOTIDE-RESOLUTION; MESSENGER-RNA; NUCLEAR-RNA; MAPPING REVEALS; HITS-CLIP; METHYLATION; TRANSCRIPTOME; SITES; STEM; SEQ;
D O I
10.1016/j.biotechadv.2020.107656
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Over 160 RNA modifications have been identified, including N-7-methylguanine (m(7)G), N-6-methyladenosine (m(6)A), and 5-methylcytosine (m(5)C). These modifications play key roles in regulating the fate of RNA. In eukaryotes, m(6)A is the most abundant mRNA modification, accounting for over 80% of all RNA methylation modifications. Highly dynamic m(6)A modification may exert important effects on organismal reproduction and development. Significant advances in understanding the mechanism of m(6)A modification have been made using immunoprecipitation, chemical labeling, and site-directed mutagenesis, combined with next-generation sequencing. Single-molecule real-time and nanopore direct RNA sequencing (DRS) approaches provide additional ways to study RNA modifications at the cellular level. In this review, we explore the technical history of identifying m(6)A RNA modifications, emphasizing technological advances in detecting m(6)A modification. In particular, we discuss the challenge of generating accurate dynamic single-base resolution m(6)A maps and also strategies for improving detection specificity. Finally, we outline a roadmap for future research in this area, focusing on the application of RNA epigenetic modification, represented by m(6)A modification.
引用
收藏
页数:16
相关论文
共 122 条
  • [1] HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events
    Alarcon, Claudio R.
    Goodarzi, Hani
    Lee, Hyeseung
    Liu, Xuhang
    Tavazoie, Saeed
    Tavazoie, Sohail F.
    [J]. CELL, 2015, 162 (06) : 1299 - 1308
  • [2] N6-methyladenosine marks primary microRNAs for processing
    Alarcon, Claudio R.
    Lee, Hyeseung
    Goodarzi, Hani
    Halberg, Nils
    Tavazoie, Sohail F.
    [J]. NATURE, 2015, 519 (7544) : 482 - +
  • [3] N6-Methyladenosine Inhibits Local Ribonucleolytic Cleavage to Stabilize mRNAs in Arabidopsis
    Anderson, Stephen J.
    Kramer, Marianne C.
    Gosai, Sager J.
    Yu, Xiang
    Vandivier, Lee E.
    Nelson, Andrew D. L.
    Anderson, Zachary D.
    Beilstein, Mark A.
    Fray, Rupert G.
    Lyons, Eric
    Gregory, Brian D.
    [J]. CELL REPORTS, 2018, 25 (05): : 1146 - +
  • [4] Acetylation of Cytidine in mRNA Promotes Translation Efficiency
    Arango, Daniel
    Sturgill, David
    Alhusaini, Najwa
    Dillman, Allissa A.
    Sweet, Thomas J.
    Hanson, Gavin
    Hosogane, Masaki
    Sinclair, Wilson R.
    Nanan, Kyster K.
    Mandler, Mariana D.
    Fox, Stephen D.
    Zengeya, Thomas T.
    Andresson, Thorkell
    Meier, Jordan L.
    Coller, Jeffery
    Oberdoerffer, Shalini
    [J]. CELL, 2018, 175 (07) : 1872 - +
  • [5] Engineering of a DNA Polymerase for Direct m6A Sequencing
    Aschenbrenner, Joos
    Werner, Stephan
    Marchand, Virginie
    Adam, Martina
    Motorin, Yuri
    Helm, Mark
    Marx, Andreas
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (02) : 417 - 421
  • [6] Individual RNA Base Recognition in Immobilized Oligonucleotides Using a Protein Nanopore
    Ayub, Mariam
    Bayley, Hagan
    [J]. NANO LETTERS, 2012, 12 (11) : 5637 - 5643
  • [7] N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing
    Bartosovic, Marek
    Molares, Helena Covelo
    Gregorova, Pavlina
    Hrossova, Dominika
    Kudla, Grzegorz
    Vanacova, Stepanka
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (19) : 11356 - 11370
  • [8] Bodi Z, 2017, METHODS MOL BIOL, V1562, P79, DOI 10.1007/978-1-4939-6807-7_6
  • [9] Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium
    Bruder, Mark R.
    Pyne, Michael E.
    Moo-Young, Murray
    Chung, Duane A.
    Chou, C. Perry
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (20) : 6109 - 6119
  • [10] Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells
    Carlile, Thomas M.
    Rojas-Duran, Maria F.
    Zinshteyn, Boris
    Shin, Hakyung
    Bartoli, Kristen M.
    Gilbert, Wendy V.
    [J]. NATURE, 2014, 515 (7525) : 143 - +