Two-Site Phosphorylation of EPRS Coordinates Multimodal Regulation of Noncanonical Translational Control Activity

被引:96
作者
Arif, Abul [1 ]
Jia, Jie [1 ]
Mukhopadhyay, Rupak [1 ]
Willard, Belinda [1 ]
Kinter, Michael [2 ]
Fox, Paul L. [1 ]
机构
[1] Cleveland Clin, Lerner Res Inst, Dept Cell Biol, Cleveland, OH 44195 USA
[2] Oklahoma Med Res Fdn, Free Rad Biol & Aging Res Program, Oklahoma City, OK 73104 USA
关键词
TRANSFER-RNA-SYNTHETASE; ACTIVATED MAST-CELLS; MULTISITE PHOSPHORYLATION; PROTEIN-KINASE; INITIATION-FACTOR; GAMMA-INTERFERON; GENE-EXPRESSION; COMPLEX; MECHANISM; SEQUENCE;
D O I
10.1016/j.molcel.2009.05.028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glutamyl-prolyl tRNA synthetase (EPRS) is a component of the heterotetrameric gamma-interferon-activated inhibitor of translation (GAIT) complex that binds 3'UTR GAIT elements in multiple interferon-gamma (IFN-gamma)-inducible mRNAs and suppresses their translation. Here, we elucidate the specific EPRS phosphorylation events that regulate GAIT-mediated gene silencing. IFN-gamma induces sequential phosphorylation of Ser(886) and Ser(999) in the noncatalytic linker connecting the synthetase cores. Phosphorylation of both sites is essential for EPRS release from the parent tRNA multisynthetase complex. Ser(886) phosphorylation is required for the interaction of NSAP1, which blocks EPRS binding to target mRNAs. The same phosphorylation event induces subsequent binding of ribosomal protein L13a and GAPDH and restores mRNA binding. Finally, Ser(999) phosphorylation directs the formation of a functional GAIT complex that binds initiation factor eIF4G and represses translation. Thus, two-site phosphorylation provides structural and functional pliability to EPRS and choreographs the repertoire of activities that regulates inflammatory gene expression.
引用
收藏
页码:164 / 180
页数:17
相关论文
共 63 条
  • [21] L13a blocks 48S assembly: Role of a general initiation factor in mRNA-pecific translational control
    Kapasi, Purvi
    Chaudhuri, Sujan
    Vyas, Keyur
    Baus, Diane
    Komar, Anton A.
    Fox, Paul L.
    Merrick, William C.
    Mazumder, Barsanjit
    [J]. MOLECULAR CELL, 2007, 25 (01) : 113 - 126
  • [22] Ko YG, 2002, PROTEOMICS, V2, P1304, DOI 10.1002/1615-9861(200209)2:9<1304::AID-PROT1304>3.0.CO
  • [23] 2-E
  • [24] Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1
    Ko, YG
    Kim, EK
    Kim, T
    Park, H
    Park, HS
    Choi, EJ
    Kim, S
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (08) : 6030 - 6036
  • [25] An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth
    Kyriacou, Sophia V.
    Deutscher, Murray P.
    [J]. MOLECULAR CELL, 2008, 29 (04) : 419 - 427
  • [26] Aminoacyl-tRNA synthetase complexes: beyond translation
    Lee, SW
    Cho, BH
    Park, SG
    Kim, S
    [J]. JOURNAL OF CELL SCIENCE, 2004, 117 (17) : 3725 - 3734
  • [27] Nonconventional involvement of LysRS in the molecular mechanism of USF2 transcriptional activity in FcεRI-activated mast cells
    Lee, YN
    Razin, E
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (20) : 8904 - 8912
  • [28] The function of Lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcεRI-activated mast cells
    Lee, YN
    Nechushtan, H
    Figov, N
    Razin, E
    [J]. IMMUNITY, 2004, 20 (02) : 145 - 151
  • [29] Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit
    LeFebvre, Aaron K.
    Korneeva, Nadejda L.
    Trutschl, Marjan
    Cvek, Urska
    Duzan, Roy D.
    Bradley, Christopher A.
    Hershey, John W. B.
    Rhoads, Robert E.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (32) : 22917 - 22932
  • [30] Phosphorylation-induced structural change in phospholamban and its mutants, detected by intrinsic fluorescence
    Li, M
    Cornea, RL
    Autry, JM
    Jones, LR
    Thomas, DD
    [J]. BIOCHEMISTRY, 1998, 37 (21) : 7869 - 7877