Scaling relationships for acoustic control of two-phase microstructures during direct-write printing

被引:23
作者
Collino, Rachel R. [1 ,2 ]
Ray, Tyler R. [1 ,2 ]
Friedrich, Leanne M. [1 ]
Cornell, James D. [3 ]
Meinhart, Carl D. [2 ]
Begley, Matthew R. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Elect Engn, Santa Barbara, CA 93106 USA
来源
MATERIALS RESEARCH LETTERS | 2018年 / 6卷 / 03期
关键词
Additive manufacturing; composites; direct-write; acoustic waves; PARTICLES; MANIPULATION; CELLS; FIELD;
D O I
10.1080/21663831.2018.1431317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Acoustic forces can align and consolidate particles in fluids, enabling microstructural control of two-phase materials at time-scales compatible with direct-write printing of composites. This paper presents key scaling relationships for acoustically-assisted direct-write printing that describe characteristic time-scales for assembly and alignment of particles during printing. Critical combinations of system parameters (including particle and nozzle dimensions, acoustic excitation amplitude, viscosity, and flowrate) are defined that govern particle focusing and assembly in the print stream. The results can be used to identify combinations of printing protocols and nozzle configurations that control particle packing parallel and transverse to the print direction. [GRAPHICS] IMPACT STATEMENT We present theory and experiments demonstrating acoustic focusing in conjunction with directwrite printing for 'on-the-fly' control of two-phase microstructures, and a design framework for printing arbitrary material combinations.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 23 条
  • [1] Measuring the local pressure amplitude in microchannel acoustophoresis
    Barnkob, Rune
    Augustsson, Per
    Laurell, Thomas
    Bruus, Henrik
    [J]. LAB ON A CHIP, 2010, 10 (05) : 563 - 570
  • [2] Acoustofluidics 10: Scaling laws in acoustophoresis
    Bruus, Henrik
    [J]. LAB ON A CHIP, 2012, 12 (09) : 1578 - 1586
  • [3] Tunable Nanowire Patterning Using Standing Surface Acoustic Waves
    Chen, Yuchao
    Ding, Xiaoyun
    Lin, Sz-Chin Steven
    Yang, Shikuan
    Huang, Po-Hsun
    Nama, Nitesh
    Zhao, Yanhui
    Nawaz, Ahmad Ahsan
    Guo, Feng
    Wang, Wei
    Gu, Yeyi
    Mallouk, Thomas E.
    Huang, Tony Jun
    [J]. ACS NANO, 2013, 7 (04) : 3306 - 3314
  • [4] Deposition of ordered two-phase materials using microfluidic print nozzles with acoustic focusing
    Collino, Rachel R.
    Ray, Tyler R.
    Fleming, Rachel C.
    Cornell, James D.
    Compton, Brett G.
    Begley, Matthew R.
    [J]. EXTREME MECHANICS LETTERS, 2016, 8 : 96 - 106
  • [5] Acoustic field controlled patterning and assembly of anisotropic particles
    Collino, Rachel R.
    Ray, Tyler R.
    Fleming, Rachel C.
    Sasaki, Camille H.
    Haj-Hariri, Hossein
    Begley, Matthew R.
    [J]. EXTREME MECHANICS LETTERS, 2015, 5 : 37 - 46
  • [6] Acoustic control of microstructures during direct ink writing of two-phase materials
    Friedrich, Leanne
    Collino, Rachel
    Ray, Tyler
    Begley, Matthew
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2017, 268 : 213 - 221
  • [7] Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems
    Gao, Lu
    Shields, C. Wyatt
    Johnson, Leah M.
    Graves, Steven W.
    Yellen, Benjamin B.
    Lopez, Gabriel P.
    [J]. BIOMICROFLUIDICS, 2015, 9 (01)
  • [8] 3D Printing Macroscale Engineered Materials Using Ultrasound Directed Self-Assembly and Stereolithography
    Greenhall, John
    Raeymaekers, Bart
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2017, 2 (09):
  • [9] Inertial focusing of non-spherical microparticles
    Hur, Soojung Claire
    Choi, Sung-Eun
    Kwon, Sunghoon
    Di Carlo, Dino
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (04)
  • [10] Self-assembled colloidal structures for photonics
    Kim, Shin-Hyun
    Lee, Su Yeon
    Yang, Seung-Man
    Yi, Gi-Ra
    [J]. NPG ASIA MATERIALS, 2011, 3 (01) : 25 - 33