Stochastic integration with respect to fractional Brownian motion

被引:10
作者
Carmona, P [1 ]
Coutin, L [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 4, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 03期
关键词
D O I
10.1016/S0764-4442(00)00134-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to construct a stochastic integral with respect to fractional Brownian motion W-H, for every value of the Hurst index H is an element of (0, 1), as the limit of integrals with respect to semimartingales approximating W-H. We relate this construction to former integration theory (pathwise and stochastic), and in particular we give, for H > 1/4 a precise interpretation of Privault's Ito formula [12]. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 13 条
[1]  
ALOS E, 1999, MATH PREPRINT SERIES, V262
[2]  
CARMONA P, 1998, 0698 U P SAB LAB STA
[3]  
Dai W, 1996, J APPL MATH STOCHAST, V10, P439, DOI DOI 10.1155/S104895339600038X
[4]  
DECREUSEFOND L, 1997, STOCHASTIC ANAL FRAC
[5]  
DUDLEY RM, 1998, 1 U AARH CTR MATH PH
[6]  
DUNCAN TE, 1998, STOCHASTIC CALCULUS, V1
[7]  
Lebedev N.N., 1972, Dover Books on Math- ematics
[8]   FUBINI THEOREM FOR ANTICIPATING STOCHASTIC INTEGRALS IN HILBERT-SPACE [J].
LEON, JA .
APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 27 (03) :313-327
[9]  
Lin S. J., 1995, STOCHASTICS STOCHAST, V55, P121
[10]  
Nualart D., 1996, MALLIAVIN CALCULUS R, V71, P168