Improving accuracy by subpixel smoothing in the finite-difference time domain

被引:380
作者
Farjadpour, A. [1 ]
Roundy, David
Rodriguez, Alejandro
Ibanescu, M.
Bermel, Peter
Joannopoulos, J. D.
Johnson, Steven G.
Burr, G. W.
机构
[1] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
关键词
D O I
10.1364/OL.31.002972
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling discontinuous dielectric materials, due to the inhererent discretization (pixelization). We show that accuracy can be significantly improved by using a subpixel smoothing of the dielectric function, but only if the smoothing scheme is properly designed. We develop such a scheme based on a simple criterion taken from perturbation theory and compare it with other published FDTD smoothing methods. In addition to consistently achieving the smallest errors, our scheme is the only one that attains quadratic convergence with resolution for arbitrarily sloped interfaces. Finally, we discuss additional difficulties that arise for sharp dielectric corners. (c) 2006 Optical Society of America.
引用
收藏
页码:2972 / 2974
页数:3
相关论文
共 18 条
  • [11] Harmonic inversion of time signals and its applications
    Mandelshtam, VA
    Taylor, HS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (17) : 6756 - 6769
  • [12] Accurate theoretical analysis of photonic band-gap materials (vol 48, pg 8434, 1993)
    Meade, RD
    Rappe, AM
    Brommer, KD
    Joannopoulos, JD
    Alherhand, OL
    [J]. PHYSICAL REVIEW B, 1997, 55 (23): : 15942 - 15942
  • [13] ACCURATE THEORETICAL-ANALYSIS OF PHOTONIC BAND-GAP MATERIALS
    MEADE, RD
    RAPPE, AM
    BROMMER, KD
    JOANNOPOULOS, JD
    ALERHAND, OL
    [J]. PHYSICAL REVIEW B, 1993, 48 (11): : 8434 - 8437
  • [14] Contour-path effective permittivities for the two-dimensional finite-difference time-domain method
    Mohammadi, A
    Nadgaran, H
    Agio, M
    [J]. OPTICS EXPRESS, 2005, 13 (25): : 10367 - 10381
  • [15] A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces
    Moskow, S
    Druskin, V
    Habashy, T
    Lee, P
    Davydycheva, S
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) : 442 - 464
  • [16] A 3-D tensor FDTD-formulation for treatment of sloped interfaces in electrically inhomogeneous media
    Nadobny, J
    Sullivan, D
    Wlodarczyk, W
    Deuflhard, P
    Wust, P
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (08) : 1760 - 1770
  • [17] Taflove A., 2005, Computational Electrodynamics: The Finite-Difference Time-Domain Method, V3rd
  • [18] A uniformly stable conformal FDTD-method in Cartesian grids
    Zagorodnov, IA
    Schuhmann, R
    Weiland, T
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2003, 16 (02) : 127 - 141