Evidence for a gravitational Myers effect

被引:8
作者
de Boer, J
Gimon, E
Schalm, K [1 ]
Wijnhout, J
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
[3] Inst Adv Studies, Sch Nat Sci, Princeton, NJ 08450 USA
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Myers effect; non-abelian D0-brane bound states; non-linear sigma models;
D O I
10.1016/j.aop.2004.04.010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An indication for the existence of a collective Myers solution in the non-abelian D0-brane Born-Infeld action is the presence of a tachyonic mode in fluctuations around the standard diagonal background. We show that this computation for non-abelian D0-branes in curved space has the geometric interpretation of computing the eigenvalues of the geodesic deviation operator for U(N)-valued coordinates. On general grounds one therefore expects a geometric Myers effect in regions of sufficiently negative curvature. We confirm this by explicit computations for non-abelian D0-branes on a sphere and a hyperboloid. For the former the diagonal solution is stable, but not so for the latter. We conclude by showing that near a Schwarzschild black hole one also finds a tachyonic mode in the fluctuation spectrum, signaling the possibility of a near-black-hole gravitationally induced Myers effect. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:402 / 424
页数:23
相关论文
共 32 条
[1]   THE BACKGROUND FIELD METHOD AND THE ULTRAVIOLET STRUCTURE OF THE SUPERSYMMETRIC NON-LINEAR SIGMA-MODEL [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
ANNALS OF PHYSICS, 1981, 134 (01) :85-109
[2]   CALABI-YAU MODULI SPACE, MIRROR MANIFOLDS AND SPACETIME TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
NUCLEAR PHYSICS B, 1994, 416 (02) :414-480
[3]   Strings in flat space and pp waves from N = 4 super Yang Mills [J].
Berenstein, D ;
Maldacena, J ;
Natase, H .
JOURNAL OF HIGH ENERGY PHYSICS, 2002, (04)
[4]  
Cattaneo AS, 2001, PROG THEOR PHYS SUPP, P38
[5]  
CATTANEO AS, MATHQA0012228
[6]  
DEBOER J, HEPTH0310150
[7]  
DEBOER J, HEPTH0108161
[8]   D-branes and short distances in string theory [J].
Douglas, MR ;
Kabat, D ;
Pouliot, P ;
Shenker, SH .
NUCLEAR PHYSICS B, 1997, 485 (1-2) :85-127
[9]   D-branes and Matrix theory in curved space [J].
Douglas, MR .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 68 :381-393
[10]  
DOUGLAS MR, 1998, ADV THEOR MATH PHYS, V1, P198