SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats

被引:151
作者
Erion, Derek M. [1 ,2 ,3 ]
Yonemitsu, Shin [1 ,2 ]
Nie, Yongzhan [4 ]
Nagai, Yoshio [1 ,2 ]
Gillum, Matthew P. [1 ,2 ,3 ]
Hsiao, Jennifer J. [2 ]
Iwasaki, Takanori [2 ]
Stark, Romana [2 ]
Weismann, Dirk [2 ]
Yu, Xing Xian [5 ]
Murray, Susan F. [5 ]
Bhanot, Sanjay [5 ]
Monia, Brett P. [5 ]
Horvath, Tamas L. [4 ]
Gao, Qian [4 ]
Samuel, Varman T. [2 ]
Shulman, Gerald I. [1 ,2 ,3 ]
机构
[1] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06510 USA
[2] Yale Univ, Sch Med, Dept Internal Med, New Haven, CT 06510 USA
[3] Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06510 USA
[4] Yale Univ, Sch Med, Dept Comparat Med, New Haven, CT 06510 USA
[5] ISIS Pharmaceut, Carlsbad, CA 92008 USA
关键词
gluconeogenesis; glucose; 6; phosphatase; phosphoenolpyruvate carboxykinase; type 2 diabetes mellitus; hepatic insulin resistance; RESISTANCE; STAT3; MICE; GLUCONEOGENESIS; METABOLISM; MELLITUS; FAT; TROGLITAZONE; RESTRICTION; SUPPRESSION;
D O I
10.1073/pnas.0812931106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hepatic gluconeogenesis is a major contributing factor to hyperglycemia in the fasting and postprandial states in type 2 diabetes mellitus (T2DM). Because Sirtuin 1 (SirT1) induces hepatic gluconeogenesis during fasting through the induction of phosphoenolpyruvate carboxylase kinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), and glucose-6-phosphatase (G6Pase) gene transcription, we hypothesized that reducing SirT1, by using an antisense oligonucleotide (ASO), would decrease fasting hyperglycemia in a rat model of T2DM. SirT1 ASO lowered both fasting glucose concentration and hepatic glucose production in the T2DM rat model. Whole body insulin sensitivity was also increased in the SirT1 ASO treated rats as reflected by a 25% increase in the glucose infusion rate required to maintain euglycemia during the hyperinsulinemic-euglycemic clamp and could entirely be attributed to increased suppression of hepatic glucose production by insulin. The reduction in basal and clamped rates of glucose production could in turn be attributed to decreased expression of PEPCK, FBPase, and G6Pase due to increased acetylation of signal transducer and activator of transcription 3 (STAT3), forkhead box O1 (FOXO1), and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha), known substrates of SirT1. In addition to the effects on glucose metabolism, SirT1 ASO decreased plasma total cholesterol, which was attributed to increased cholesterol uptake and export from the liver. These results indicate that inhibition of hepatic SirT1 may be an attractive approach for treatment of T2DM.
引用
收藏
页码:11288 / 11293
页数:6
相关论文
共 35 条
  • [1] SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice
    Banks, Alexander S.
    Kon, Ning
    Knight, Colette
    Matsumoto, Michihiro
    Gutierrez-Juarez, Roger
    Rossetti, Luciano
    Gu, Wei
    Accili, Domenico
    [J]. CELL METABOLISM, 2008, 8 (04) : 333 - 341
  • [2] BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
  • [3] SirT1 Regulates Energy Metabolism and Response to Caloric Restriction in Mice
    Boily, Gino
    Seifert, Erin L.
    Bevilacqua, Lisa
    He, Xiao Hong
    Sabourin, Guillaume
    Estey, Carmen
    Moffat, Cynthia
    Crawford, Sean
    Saliba, Sarah
    Jardine, Karen
    Xuan, Jian
    Evans, Meredith
    Harper, Mary-Ellen
    McBurney, Michael W.
    [J]. PLOS ONE, 2008, 3 (03):
  • [4] Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
    Bordone, L
    Motta, MC
    Picard, F
    Robinson, A
    Jhala, US
    Apfeld, J
    McDonagh, T
    Lemieux, M
    McBurney, M
    Szilvasi, A
    Easlon, EJ
    Lin, SJ
    Guarente, L
    [J]. PLOS BIOLOGY, 2006, 4 (02): : 210 - 220
  • [5] Tissue-specific regulation of SIRT1 by calorie restriction
    Chen, Danica
    Bruno, Joanne
    Easlon, Erin
    Lin, Su-Ju
    Cheng, Hwei-Ling
    Alt, Frederick W.
    Guarente, Leonard
    [J]. GENES & DEVELOPMENT, 2008, 22 (13) : 1753 - 1757
  • [6] Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    Cheng, HL
    Mostoslavsky, R
    Saito, S
    Manis, JP
    Gu, YS
    Patel, P
    Bronson, R
    Appella, E
    Alt, FW
    Chua, KF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) : 10794 - 10799
  • [7] Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance
    Choi, Cheol Soo
    Savage, David B.
    Kulkarni, Ameya
    Yu, Xing Xian
    Liu, Zhen-Xiang
    Morino, Katsutaro
    Kim, Sheene
    Distefano, Alberto
    Samuel, Varman T.
    Neschen, Susanne
    Zhang, Dongyan
    Wang, Amy
    Zhang, Xian-Man
    Kahn, Mario
    Cline, Gary W.
    Pandey, Sanjay K.
    Geisler, John G.
    Bhanot, Sanjay
    Monia, Brett P.
    Shulman, Gerald I.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (31) : 22678 - 22688
  • [8] Pharmacologic therapy for type 2 diabetes mellitus
    DeFronzo, RA
    [J]. ANNALS OF INTERNAL MEDICINE, 1999, 131 (04) : 281 - 303
  • [9] Specific SIRT1 Activation Mimics Low Energy Levels and Protects against Diet-induced Metabolic Disorders by Enhancing Fat Oxidation
    Feige, Jerome N.
    Lagouge, Marie
    Canto, Carles
    Strehle, Axelle
    Houten, Sander M.
    Milne, Jill C.
    Lambert, Philip D.
    Mataki, Chikage
    Elliott, Peter J.
    Auwerx, Johan
    [J]. CELL METABOLISM, 2008, 8 (05) : 347 - 358
  • [10] Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
    Frescas, D
    Valenti, L
    Accili, D
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (21) : 20589 - 20595