Autoignition of pentane isomers in a spark-ignition engine

被引:11
作者
Cheng, Song [1 ]
Yang, Yi [1 ]
Brear, Michael J. [1 ]
Kang, Dongil [2 ]
Bohac, Stanislav [3 ]
Boehman, Andre L. [3 ]
机构
[1] Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
基金
澳大利亚研究理事会;
关键词
Pentane; Autoignition; Knock; Spark-ignition engine; Nitric oxide; OCTANE NUMBERS; GASOLINE; ISOOCTANE;
D O I
10.1016/j.proci.2016.08.042
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes a study on the autoignition of three pentane isomers (n-, neo- and iso-pentane) in a Cooperative Fuel Research (CFR) engine operating at standard, ASTM knocking conditions. The Research Octane Numbers (RONs) of these three fuels are first measured and compared to historical data. Autoignition of pentane/air mixtures in the CFR engine are then simulated using a two-zone model with detailed chemical kinetics. Initial and boundary conditions for these kinetic simulations are systematically calibrated using engine simulation software. Two published, detailed kinetic mechanisms for these fuels are tested with a published NO sub-mechanism incorporated into them. Simulations using both of these mechanisms demonstrate autoignition in the engine for all three pentanes, and that residual NO promotes autoignition, as found in previous studies. Differences between these two mechanisms and the engine experiments are nonetheless observed, and these differences are consistent with those observed in simulations of published rapid compression machine (RCM) data. Comparison of the RCM and the CFR engine modelling also suggests the need for high accuracy experiments and high-fidelity models due to the significant impact that small differences in autoignition timing can potentially produce in real engines. (C) 2016 by The Combustion Institute. Published by Elsevier Inc.
引用
收藏
页码:3499 / 3506
页数:8
相关论文
共 50 条
  • [21] Combustion of n-butanol in a spark-ignition IC engine
    Szwaja, S.
    Naber, J. D.
    FUEL, 2010, 89 (07) : 1573 - 1582
  • [22] Comparison of performance of compact chamber spark-ignition engine with conventional SI engine
    Najjar, Yousef S. H.
    Al-Haddad, Muhannad R.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (07) : 640 - 646
  • [23] Experimental assessment of regenerated lube oil in spark-ignition engine for sustainable environment
    Usman, Muhammad
    Saqib, Syed
    Zubair, Syed Wasim Hassan
    Irshad, Muneeb
    Kazmi, Ammar Hussain
    Noor, Ahmed
    Zaman, Hafiz Umer
    Nasir, Zaheer
    Malik, Muhammad Ali Ijaz
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (07)
  • [24] Impact assessment of acetylene fueling on the performance, emissions, and combustion of a spark-ignition engine
    Sharma, Sumit
    Sharma, Dilip
    Singh, Digambar
    Sharma, Pushpendra Kumar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [25] Improved throttle valve modeling for spark-ignition engine simulations
    Haddad, Elie
    Chalet, David
    Chesse, Pascal
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2019, 233 (06) : 1614 - 1622
  • [26] Analysis of knocking combustion with methanol/iso-octane and ethanol/isooctane blends in a spark-ignition engine
    Wei, Jianan
    Feng, Hongqing
    Liu, Haifeng
    Zhu, Hongyan
    Yue, Zongyu
    Yao, Mingfa
    FUEL, 2021, 284
  • [27] Influence of plasma-assisted ignition on flame propagation and performance in a spark-ignition engine
    Hwang, Joonsik
    Kim, Wooyeong
    Bae, Choongsik
    APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2021, 6
  • [28] Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
    Yue, Zongyu
    Edwards, K. Dean
    Sluders, C. Scott
    Som, Sibendu
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (10):
  • [29] Knocking combustion in spark-ignition engines
    Wang, Zhi
    Liu, Hui
    Reitz, Rolf D.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 61 : 78 - 112
  • [30] Capturing different modes of hydrogen combustion in a spark-ignition engine using numerical simulations
    Manzoor, Muhammad Umair
    Dou, Xinbei
    Yosri, Mohammadreza
    Talei, Mohsen
    Yang, Yi
    FUEL, 2024, 375