Optimization of a high-performance lead-free cesium-based inorganic perovskite solar cell through numerical approach

被引:16
作者
Tulka, Tasmin Kamal [1 ]
Alam, Nowshin [2 ]
Akhtaruzzaman, Md [3 ]
Sobayel, K. [3 ]
Hossain, M. Mofazzal [4 ]
机构
[1] BRAC Univ, Dept Math & Nat Sci, Dhaka, Bangladesh
[2] Amer Int Univ Bangladesh, Dept Elect & Elect Engn, Dhaka, Bangladesh
[3] Natl Univ Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[4] Univ Liberal Arts Bangladesh, Dept Elect & Elect Engn, Dhaka 1207, Bangladesh
关键词
CsGeI3; perovskite; ETL; HTL; ZnOS; CZTSe; Clean energy; SCAPS-1D; TEMPERATURE-DEPENDENCE; HALIDE PEROVSKITES; THIN-FILMS; SIMULATION; PRESSURE;
D O I
10.1016/j.heliyon.2022.e11719
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, an ultra-thin (0.815 ??m) lead-free all-inorganic novel PV cell structure consisting of solid-state layers with the configuration SnO2/ZnOS/CsGeI3/CZTSe/Au has been optimized using SCAPS-1D simulator. ZnOS electron transport layer (ETL) has been deployed and various hole transport layer (HTL) material candidates have been considered to find the most suitable one in order to get the maximum possible power conversion efficiency (PCE). The simulation begins with the optimization of the thickness of the ZnOS buffer layer, followed by an analysis of HTL and ETL doping concentrations, thickness and bandgap optimization of absorber layer. The maximum permissible defect density at the ZnOS/CsGeI3 interface and the bulk defect density of the absorber layer (CsGeI3) are also investigated. It is also found that when the temperature rises, short circuit current density (Jsc) rises by 1.43 mA/K and open-circuit voltage (Voc) degrades by 2 mV/K. The optimized structure results in a PCE of 26.893% with Jsc, Voc, and fill factor (FF) of 28.172 mA cm-2, 1.0834 V, and 88.107% respectively. The cell performance parameters outperform those found in the recent literature. The simulated results of the proposed configuration are expected to be a helpful reference for the future implementation of a cost-effective and efficient all-inorganic perovskite PV cell.
引用
收藏
页数:10
相关论文
共 54 条
[41]   Effects of spectral coupling on perovskite solar cells under diverse climatic conditions [J].
Senthilarasu, S. ;
Fernandez, Eduardo F. ;
Almonacid, F. ;
Mallick, Tapas K. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 133 :92-98
[42]   The performance study of CdTe/CdS/SnO2 solar cell [J].
Shukla, Virang ;
Panda, Gopal .
MATERIALS TODAY-PROCEEDINGS, 2020, 26 :487-491
[43]   Numerical simulation of highly efficient lead-free perovskite layers for the application of all-perovskite multi junction solar cell [J].
Singh, Neelima ;
Agarwal, Alpana ;
Agarwal, Mohit .
SUPERLATTICES AND MICROSTRUCTURES, 2021, 149
[44]   Temperature dependence of solar cell performance-an analysis [J].
Singh, Priyanka ;
Ravindra, N. M. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 :36-45
[45]   Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool [J].
Sobayel, K. ;
Shahinuzzaman, M. ;
Amin, N. ;
Karim, M. R. ;
Dar, M. A. ;
Gul, R. ;
Alghoul, M. A. ;
Sopian, K. ;
Hasan, A. K. M. ;
Akhtaruzzaman, Md .
SOLAR ENERGY, 2020, 207 :479-485
[46]  
Sze S.M., 2006, Physics of Semiconductor Devices
[47]   Computational approach to explore suitable charge transport layers for all inorganic CsGeI3 perovskite solar cells [J].
Tara, Ayush ;
Bharti, Vishal ;
Sharma, Susheel ;
Gupta, Rockey .
OPTICAL MATERIALS, 2022, 128
[48]  
Tcheum GLM, 2020, PRAMANA-J PHYS, V94, DOI 10.1007/s12043-020-01977-y
[49]   Determination of the temperature dependency of the electrical parameters of CIGS solar cells [J].
Theelen, M. ;
Liakopoulou, A. ;
Hans, V. ;
Daume, F. ;
Steijvers, H. ;
Barreau, N. ;
Vroon, Z. ;
Zeman, M. .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (02)
[50]   Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells [J].
Turcu, M ;
Pakma, O ;
Rau, U .
APPLIED PHYSICS LETTERS, 2002, 80 (14) :2598-2600