Top-Down Visual Saliency via Joint CRF and Dictionary Learning

被引:99
|
作者
Yang, Jimei [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Adobe Res, San Jose, CA 95110 USA
[2] Univ Calif Merced, Sch Engn, Merced, CA USA
基金
美国国家科学基金会;
关键词
Visual saliency; top-down visual saliency; fixation prediction; dictionary learning and conditional random fields; FEATURES; ATTENTION;
D O I
10.1109/TPAMI.2016.2547384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.
引用
收藏
页码:576 / 588
页数:13
相关论文
共 50 条
  • [21] Impaired top-down control of visual search in schizophrenia
    Gold, James M.
    Fuller, Rebecca L.
    Robinson, Benjamin M.
    Braun, Elsie L.
    Luck, Steven J.
    SCHIZOPHRENIA RESEARCH, 2007, 94 (1-3) : 148 - 155
  • [22] Gravity Influences Top-Down Signals in Visual Processing
    Cheron, Guy
    Leroy, Axelle
    Palmero-Soler, Ernesto
    De Saedeleer, Caty
    Bengoetxea, Ana
    Cebolla, Ana-Maria
    Vidal, Manuel
    Dan, Bernard
    Berthoz, Alain
    McIntyre, Joseph
    PLOS ONE, 2014, 9 (01):
  • [23] Contextual-based top-down saliency feature weighting for target detection
    Ibrahim Rahman
    Christopher Hollitt
    Mengjie Zhang
    Machine Vision and Applications, 2016, 27 : 893 - 914
  • [24] Top-down Visual Selective Attention Model Combined with Bottom-up Saliency Map for Incremental Object Perception
    Ban, Sang-Woo
    Kim, Bumhwi
    Lee, Minho
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [25] Top-down Visual Selective Attention Model Combined with Bottom-up Saliency Map for Incremental Object Perception
    Ban, Sang-Woo
    Kim, Bumhwi
    Lee, Minho
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [26] The functional and temporal characteristics of top-down modulation in visual selection
    Rose, M
    Schmid, C
    Winzen, A
    Sommer, T
    Büchel, C
    CEREBRAL CORTEX, 2005, 15 (09) : 1290 - 1298
  • [27] VISUAL SEARCH GUIDED BY AN EFFICIENT TOP-DOWN ATTENTION APPROACH
    Mesquita, R. G.
    Mello, C. A. B.
    Castilho, P. L.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 679 - 683
  • [28] Top-down control: A unified principle of cortical learning
    Makino, Hiroshi
    NEUROSCIENCE RESEARCH, 2019, 141 : 23 - 28
  • [29] Modeling the top-down influences on the lateral interactions in the visual cortex
    Setic, Mia
    Domijan, Drazen
    BRAIN RESEARCH, 2008, 1225 : 86 - 101
  • [30] Top-down visual activity underlying VSTM and preparatory attention
    Stokes, Mark G.
    NEUROPSYCHOLOGIA, 2011, 49 (06) : 1425 - 1427