Local semicircle law with imprimitive variance matrix

被引:6
作者
Ajanki, Oskari [1 ]
Erdos, Laszlo [1 ]
Krueger, Torben [1 ]
机构
[1] IST Austria, A-3400 Klosterneuburg, Austria
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2014年 / 19卷
关键词
Generalised Wigner matrices; generalised random sample covariance matrices; hard edge; local semicircle law; UNIVERSALITY;
D O I
10.1214/ECP.v19-3121
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the proof of the local semicircle law for generalized Wigner matrices given in [4] to the case when the matrix of variances has an eigenvalue -1. In particular, this result provides a short proof of the optimal local Marchenko-Pastur law at the hard edge (i.e. around zero) for sample covariance matrices X*X, where the variances of the entries of X may vary.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 10 条
[1]  
Berman A., 1994, CLASSICS APPL MATH, DOI 10.1137/1.9781611971262.
[2]  
Bourgade Paul, 2013, PROBABILITY THEORY R, P1
[3]   Local Marchenko-Pastur law at the hard edge of sample covariance matrices [J].
Cacciapuoti, Claudio ;
Maltsev, Anna ;
Schlein, Benjamin .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
[4]  
Erados L, 2012, B AM MATH SOC, V49, P377
[5]   The local semicircle law for a general class of random matrices [J].
Erdos, Laszlo ;
Knowles, Antti ;
Yau, Horng-Tzer ;
Yin, Jun .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
[6]   Bulk universality for generalized Wigner matrices [J].
Erdos, Laszlo ;
Yau, Horng-Tzer ;
Yin, Jun .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (1-2) :341-407
[7]  
Erdos L, 2011, J COMB, V2, P15
[8]   The local relaxation flow approach to universality of the local statistics for random matrices [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer ;
Yin, Jun .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (01) :1-46
[9]   Rigidity of eigenvalues of generalized Wigner matrices [J].
Erdos, Laszlo ;
Yau, Horng-Tzer ;
Yin, Jun .
ADVANCES IN MATHEMATICS, 2012, 229 (03) :1435-1515
[10]  
Rudelson M., 2013, Private Communication