Experimental determination on thermal parameters of prismatic lithium ion battery cells

被引:81
作者
Sheng, Lei [1 ]
Su, Lin [1 ]
Zhang, Hengyun [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, 516 Jungong Rd, Shanghai 200093, Peoples R China
[2] Shanghai Univ Engn Sci, Automot Engn Coll, 333 Longteng Rd, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery cells; Specific heat; Thermal conductivity; Quasi steady state; Experimental test; HEAT-CAPACITY; THERMOPHYSICAL PROPERTIES; TEMPERATURE; SIMULATION; BEHAVIOR; POWER;
D O I
10.1016/j.ijheatmasstransfer.2019.04.143
中图分类号
O414.1 [热力学];
学科分类号
摘要
Characterizing thermal parameters of a lithium ion battery is a key step to predict the temperature distribution of battery cell modules. In this work, a novel method is developed based on the quasi-steady state heat transfer analysis to determine the thermal conductivity and the specific heat simultaneously. Both prismatic lithium iron phosphate cells and pouch cells with different electrode materials are used in this experimental test. A constant heat flux is applied to the cell surface whereas the heat loss is estimated based upon the temperature drop curve. As such, the quasi-steady state heat transfer can be attained to determine cell thermal parameters. It is observed that cell thermal parameters increase linearly with the increase of the operating temperature. Furthermore, the operating temperature has a more significant influence on the cell specific heat than the thermal conductivity, while the effect of the state of charge has a minimal effect on these two parameters. The current method demonstrates an effective and practical way to determine the thermal conductivity and specific heat of the cell simultaneously. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 27 条
[1]   Experimental study on the influence of temperature and state-of-charge on the thermophysical properties of an LFP pouch cell [J].
Bazinski, Stephen J. ;
Wang, Xia .
JOURNAL OF POWER SOURCES, 2015, 293 :283-291
[2]   Methodology to determine the heat capacity of lithium-ion cells [J].
Bryden, Thomas S. ;
Dimitrov, Borislav ;
Hilton, George ;
de Leon, Carlos Ponce ;
Bugryniec, Peter ;
Brown, Solomon ;
Cumming, Denis ;
Cruden, Andrew .
JOURNAL OF POWER SOURCES, 2018, 395 :369-378
[3]   Thermal analysis of lithium-ion batteries [J].
Chen, SC ;
Wan, CC ;
Wang, YY .
JOURNAL OF POWER SOURCES, 2005, 140 (01) :111-124
[4]   Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells [J].
Drake, S. J. ;
Wetz, D. A. ;
Ostanek, J. K. ;
Miller, S. P. ;
Heinzel, J. M. ;
Jain, A. .
JOURNAL OF POWER SOURCES, 2014, 252 :298-304
[5]   Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J].
Forgez, Christophe ;
Do, Dinh Vinh ;
Friedrich, Guy ;
Morcrette, Mathieu ;
Delacourt, Charles .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2961-2968
[6]   Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application [J].
Guo, Guifang ;
Long, Bo ;
Cheng, Bo ;
Zhou, Shiqiong ;
Xu, Peng ;
Cao, Binggang .
JOURNAL OF POWER SOURCES, 2010, 195 (08) :2393-2398
[7]  
Incropera F. P., 2007, FUNDAMENTALS HEAT MA, P139
[8]   Lattice Boltzmann simulation of ion and electron transport during the discharge process in a randomly reconstructed porous electrode of a lithium-ion battery [J].
Jiang, Z. Y. ;
Qu, Z. G. ;
Zhou, L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 123 :500-513
[9]   Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring [J].
Lin, Xinfan ;
Perez, Hector E. ;
Siegel, Jason B. ;
Stefanopoulou, Anna G. ;
Li, Yonghua ;
Anderson, R. Dyche ;
Ding, Yi ;
Castanier, Matthew P. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (05) :1745-1755
[10]   Thermal properties of lithium-ion battery and components [J].
Maleki, H ;
Al Hallaj, S ;
Selman, JR ;
Dinwiddie, RB ;
Wang, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :947-954