A conservative finite difference scheme for Poisson-Nernst-Planck equations

被引:62
作者
Flavell, Allen [1 ]
Machen, Michael [1 ]
Eisenberg, Bob [2 ]
Kabre, Julienne [1 ]
Liu, Chun [3 ]
Li, Xiaofan [1 ]
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
[2] Rush Presbyterian St Lukes Med Ctr, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Electrodiffusion; Finite difference; Ion channel modeling; Poisson-Nernst-Planck equations; INCOMPRESSIBLE-FLOW; MODEL; ELECTRODIFFUSION; SIMULATION; CHANNEL;
D O I
10.1007/s10825-013-0506-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A macroscopic model to describe the dynamics of ion transport in ion channels is the Poisson-Nernst-Planck (PNP) equations. In this paper, we develop a finite-difference method for solving PNP equations, second-order accurate in both space and time. We use the physical parameters specifically suited toward the modeling of ion channels. We present a simple iterative scheme to solve the system of nonlinear equations resulting from discretizing the equations implicitly in time, which is demonstrated to converge in a few iterations. We place emphasis on ensuring numerical methods to have the same physical properties that the PNP equations themselves also possess, namely conservation of total ions, correct rates of energy dissipation, and positivity of the ion concentrations. We describe in detail an approach to derive a finite-difference method that preserves the total concentration of ions exactly in time. In addition, we find a set of sufficient conditions on the step sizes of the numerical method that assure positivity of the ion concentrations. Further, we illustrate that, using realistic values of the physical parameters, the conservation property is critical in obtaining correct numerical solutions over long time scales.
引用
收藏
页码:235 / 249
页数:15
相关论文
共 33 条
[1]  
[Anonymous], ANZIAM J
[2]  
[Anonymous], J AM CHEM SOC
[3]  
[Anonymous], THESIS U BONN GERMAN
[4]   TRANSIENT SIMULATION OF SILICON DEVICES AND CIRCUITS [J].
BANK, RE ;
COUGHRAN, WM ;
FICHTNER, W ;
GROSS, EH ;
ROSE, DJ ;
SMITH, RK .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1985, 4 (04) :436-451
[5]  
BOLLEY C, 1978, RAIRO-ANAL NUMER-NUM, V12, P237
[6]   Effects of exogenous electromagnetic fields on a simplified ion channel model [J].
Cagni, E. ;
Remondini, D. ;
Mesirca, P. ;
Castellani, G. C. ;
Verondini, E. ;
Bersani, F. .
JOURNAL OF BIOLOGICAL PHYSICS, 2007, 33 (03) :183-194
[7]   Preserving energy resp dissipation in numerical PDEs using the "Average Vector Field" method [J].
Celledoni, E. ;
Grimm, V. ;
McLachlan, R. I. ;
McLaren, D. I. ;
O'Neale, D. ;
Owren, B. ;
Quispel, G. R. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (20) :6770-6789
[8]   A CONSERVATIVE MESH-FREE SCHEME AND GENERALIZED FRAMEWORK FOR CONSERVATION LAWS [J].
Chiu, Edmond Kwan-Yu ;
Wang, Qiqi ;
Hu, Rui ;
Jameson, Antony .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (06) :A2896-A2916
[9]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[10]   Ionic channels in biological membranes - electrostatic analysis of a natural nanotube [J].
Eisenberg, B .
CONTEMPORARY PHYSICS, 1998, 39 (06) :447-466