NORM-COMPATIBLE SYSTEMS OF GALOIS COHOMOLOGY CLASSES FOR GSP6

被引:0
作者
Cauchi, Antonio [1 ]
Jacinto, Joaquin Rodrigues [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat, Edif Omega,Despatx 419,C Jordi Girona 1-3, Barcelona 08034, Spain
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, 46 Allee Italie, F-69364 Lyon 07, France
来源
DOCUMENTA MATHEMATICA | 2020年 / 25卷
基金
英国工程与自然科学研究理事会;
关键词
Euler systems; Shimura varieties; p-adic L-functions; EISENSTEIN CLASSES; HIGHER REGULATORS; DECOMPOSITION; ELEMENTS; VALUES; BIRCH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct global cohomology classes in the middle degree plus one cohomology group of the Shimura variety of the symplectic group GSp(6) compatible when one varies the level at p. These classes are expected constituents of an Euler system for the Galois representations appearing in the middle degree etale cohomology groups of the aforementioned variety. As an application, we show how these classes provide elements in the Iwasawa cohomology of these representations and, by applying Perrin-Riou's machinery, p-adic L-functions associated to them.
引用
收藏
页码:911 / 954
页数:44
相关论文
共 33 条
  • [1] Ancona G, 2015, MANUSCRIPTA MATH, V146, P307, DOI 10.1007/s00229-014-0708-4
  • [2] [Anonymous], 1986, Contemporary Mathematics.
  • [3] [Anonymous], 2016, AM MATH SOC
  • [4] Bertolini M, 2015, J ALGEBRAIC GEOM, V24, P569
  • [5] Blasius D., 1994, Motives, V55, P525
  • [6] Cauchi A., 2019, ARXIV191011207
  • [7] Norm-compatible systems of cohomology classes for GU(2,2)
    Cauchi, Antonio
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (03) : 461 - 510
  • [8] Cisinski D-C, 2019, Triangulated categories of mixed motives
  • [9] DENINGER C, 1991, J REINE ANGEW MATH, V422, P201
  • [10] Fulton W., 1991, Representation theory: a first course