Curcumin-loaded biodegradable polyurethane scaffolds modified with gelatin using 3D printing technology for cartilage tissue engineering

被引:17
|
作者
Lee, Min Jeong [1 ]
Kim, Sung Eun [2 ,3 ]
Park, Juri [1 ]
Ahn, Guk Young [1 ]
Yun, Tae Hoon [1 ]
Choi, Inseong [1 ]
Kim, Hak-Jun [2 ,3 ]
Choi, Sung-Wook [1 ]
机构
[1] Catholic Univ Korea, Dept Biotechnol, 43 Jibong Ro, Bucheon Si, Gyeonggi Do, South Korea
[2] Korea Univ, Coll Med, Guro Hosp, Dept Orthoped Surg, 148 Gurodong Ro, Seoul, South Korea
[3] Korea Univ, Coll Med, Guro Hosp, Rare Dis Inst, 148 Gurodong Ro, Seoul, South Korea
关键词
3D printing; biodegradable polyurethane; cartilage regeneration; curcumin; scaffold;
D O I
10.1002/pat.4740
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We described the curcumin-loaded biodegradable polyurethane (PU) scaffolds modified with gelatin based on three-dimensional (3D) printing technology for potential application of cartilage regeneration. The printing solution of poly(epsilon-caprolactone) (PCL) triol (polyol) and hexamethylene diisocyanate (HMDI) in 2,2,2-trifluoroethanol was printed through a nozzle in dimethyl sulfoxide phase with or without gelatin. The weight ratio of HMDI against PCL triol was varied as 3, 5, and 7 in order to evaluate its effect on the mechanical properties and biodegradation rate. A higher ratio of HMDI resulted in higher mechanical properties and a lower biodegradation rate. The use of gelatin increased the mechanical properties, biodegradation rate, and curcumin release due to the surface cross-linking, nanoporous structure, and surface hydrophilicity of the scaffolds. In vitro study revealed that the released curcumin enhanced the proliferation and differentiation of chondrocyte. The 3D-printed biodegradable PU scaffold modified with gelatin should thus be considered as a potential candidate for cartilage regeneration.
引用
收藏
页码:3083 / 3090
页数:8
相关论文
共 50 条
  • [41] Development of 3D Bioactive Scaffolds through 3D Printing Using Wollastonite-Gelatin Inks
    Curti, Filis
    Stancu, Izabela-Cristina
    Voicu, Georgeta
    Iovu, Horia
    Dobrita, Cristina-Ioana
    Ciocan, Lucian Toma
    Marinescu, Rodica
    Iordache, Florin
    POLYMERS, 2020, 12 (10) : 1 - 15
  • [42] Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties
    Shi Zhe
    Liu Weiye
    Zhai Dong
    Xie Jianjun
    Zhu Yufang
    JOURNAL OF INORGANIC MATERIALS, 2023, 38 (07) : 763 - 770
  • [43] Tantalum Nanoparticles Reinforced PCL Scaffolds Using Direct 3D Printing for Bone Tissue Engineering
    Xiong, Zixuan
    Liu, Wenbin
    Qian, Hu
    Lei, Ting
    He, Xi
    Hu, Yihe
    Lei, Pengfei
    FRONTIERS IN MATERIALS, 2021, 8
  • [44] 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering
    Chawla, Dipul
    Kaur, Tejinder
    Joshi, Akshay
    Singh, Neetu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 144 (144) : 560 - 567
  • [45] Aromatic π-Conjugated Curcumin on Surface Modified Polyaniline/Polyhydroxyalkanoate Based 3D Porous Scaffolds for Tissue Engineering Applications
    Pramanik, Nilkamal
    Dutta, Kingshuk
    Basu, Ranjan K.
    Kundu, Patit P.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2 (12): : 2365 - 2377
  • [46] Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering
    Loewner, Sebastian
    Heene, Sebastian
    Baroth, Timo
    Heymann, Henrik
    Cholewa, Fabian
    Blume, Holger
    Blume, Cornelia
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [47] Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering
    Wen, Yi-Ting
    Dai, Niann-Tzyy
    Hsu, Shan-hui
    ACTA BIOMATERIALIA, 2019, 88 : 301 - 313
  • [48] Application of 3D Printing Technology in Bone Tissue Engineering: A Review
    Feng, Yashan
    Zhu, Shijie
    Mei, Di
    Li, Jiang
    Zhang, Jiaxiang
    Yang, Shaolong
    Guan, Shaokang
    CURRENT DRUG DELIVERY, 2021, 18 (07) : 847 - 861
  • [49] 3D Printing of Polycaprolactone-Polyaniline Electroactive Scaffolds for Bone Tissue Engineering
    Wibowo, Arie
    Vyas, Cian
    Cooper, Glen
    Qulub, Fitriyatul
    Suratman, Rochim
    Mahyuddin, Andi Isra
    Dirgantara, Tatacipta
    Bartolo, Paulo
    MATERIALS, 2020, 13 (03)
  • [50] 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications
    Vyas, Cian
    Zhang, Jun
    Ovrebo, Oystein
    Huang, Boyang
    Roberts, Iwan
    Setty, Mohan
    Allardyce, Benjamin
    Haugen, Havard
    Rajkhowa, Rangam
    Bartolo, Paulo
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118