Curcumin-loaded biodegradable polyurethane scaffolds modified with gelatin using 3D printing technology for cartilage tissue engineering

被引:17
|
作者
Lee, Min Jeong [1 ]
Kim, Sung Eun [2 ,3 ]
Park, Juri [1 ]
Ahn, Guk Young [1 ]
Yun, Tae Hoon [1 ]
Choi, Inseong [1 ]
Kim, Hak-Jun [2 ,3 ]
Choi, Sung-Wook [1 ]
机构
[1] Catholic Univ Korea, Dept Biotechnol, 43 Jibong Ro, Bucheon Si, Gyeonggi Do, South Korea
[2] Korea Univ, Coll Med, Guro Hosp, Dept Orthoped Surg, 148 Gurodong Ro, Seoul, South Korea
[3] Korea Univ, Coll Med, Guro Hosp, Rare Dis Inst, 148 Gurodong Ro, Seoul, South Korea
关键词
3D printing; biodegradable polyurethane; cartilage regeneration; curcumin; scaffold;
D O I
10.1002/pat.4740
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We described the curcumin-loaded biodegradable polyurethane (PU) scaffolds modified with gelatin based on three-dimensional (3D) printing technology for potential application of cartilage regeneration. The printing solution of poly(epsilon-caprolactone) (PCL) triol (polyol) and hexamethylene diisocyanate (HMDI) in 2,2,2-trifluoroethanol was printed through a nozzle in dimethyl sulfoxide phase with or without gelatin. The weight ratio of HMDI against PCL triol was varied as 3, 5, and 7 in order to evaluate its effect on the mechanical properties and biodegradation rate. A higher ratio of HMDI resulted in higher mechanical properties and a lower biodegradation rate. The use of gelatin increased the mechanical properties, biodegradation rate, and curcumin release due to the surface cross-linking, nanoporous structure, and surface hydrophilicity of the scaffolds. In vitro study revealed that the released curcumin enhanced the proliferation and differentiation of chondrocyte. The 3D-printed biodegradable PU scaffold modified with gelatin should thus be considered as a potential candidate for cartilage regeneration.
引用
收藏
页码:3083 / 3090
页数:8
相关论文
共 50 条
  • [1] Synthesis and 3D Printing of Biodegradable Polyurethane Elastomer by a Water-Based Process for Cartilage Tissue Engineering Applications
    Hung, Kun-Che
    Tseng, Ching-Shiow
    Hsu, Shan-hui
    ADVANCED HEALTHCARE MATERIALS, 2014, 3 (10) : 1578 - 1587
  • [2] Biodegradable Scaffolds for Urethra Tissue Engineering Based on 3D Printing
    Xu, Yifan
    Meng, Qinghua
    Jin, Xin
    Liu, Feng
    Yu, Jianjun
    ACS APPLIED BIO MATERIALS, 2020, 3 (04): : 2007 - 2016
  • [3] Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering
    Sarkar, Naboneeta
    Bose, Susmita
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (19) : 17184 - 17192
  • [4] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [5] Development and characterization of electrospun curcumin-loaded PVA/gelatin based nanofibers scaffolds for skin tissue engineering
    Sahani, Kritika
    Smita, Soumya Shuvra
    Dey, Sovan
    Biswas, Amit
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2025, 40 (02) : 193 - 212
  • [6] Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering
    Tsai, Meng-Chao
    Hung, Kun-Che
    Hung, Shih-Chieh
    Hsu, Shan-hui
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 125 : 34 - 44
  • [7] Biodegradable Polymers for 3D Printing of Tissue Engineering Scaffolds: Challenges and Future Directions
    Jonathan, Eribe M.
    Oghama, Osarumen E.
    Ifijen, Ikhazuagbe Hilary
    Onaiwu, Gregory E.
    TMS 2024 153RD ANNUAL MEETING & EXHIBITION: SUPPLEMENTAL PROCEEDINGS, 2024, : 469 - 483
  • [8] Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering
    Hung, Kun-Che
    Tseng, Ching-Shiow
    Dai, Lien-Guo
    Hsu, Shan-hui
    BIOMATERIALS, 2016, 83 : 156 - 168
  • [9] 3D printing of PLGA scaffolds for tissue engineering
    Mironov, Anton V.
    Grigoryev, Aleksey M.
    Krotova, Larisa I.
    Skaletsky, Nikolaj N.
    Popov, Vladimir K.
    Sevastianov, Viktor I.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (01) : 104 - 109
  • [10] Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering
    Yoo, HS
    Lee, EA
    Yoon, JJ
    Park, TG
    BIOMATERIALS, 2005, 26 (14) : 1925 - 1933