Classification of congruences of twisted partition monoids

被引:5
作者
East, James [1 ]
Ruskuc, Nik [2 ]
机构
[1] Western Sydney Univ, Ctr Res Math & Data Sci, Locked Bag 1797, Penrith, NSW 2751, Australia
[2] Univ St Andrews, Math Inst, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
Partition monoid; Twisted partition monoid; Congruence; Congruence lattice; BRAUER; IDEMPOTENTS; INVARIANT; ALGEBRAS; KAUFFMAN; ENUMERATION; SEMIGROUPS; LATTICES;
D O I
10.1016/j.aim.2021.108097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The twisted partition monoid P(n)(Phi )is an infinite monoid obtained from the classical finite partition monoid P-n by taking into account the number of floating components when multiplying partitions. The main result of this paper is a complete description of the congruences on P-n(Phi). The succinct encoding of a congruence, which we call a C-pair, consists of a sequence of n + 1 congruences on the additive monoid N of natural numbers and a certain (n + 1) x N matrix. We also give a description of the inclusion ordering of congruences in terms of a lexicographic-like ordering on C-pairs. This is then used to classify congruences on the finite d-twisted partition monoids P-n,d(Phi), which are obtained by factoring out from P-n(Phi) the ideal of all partitions with more than d floating components. Further applications of our results, elucidating the structure and properties of the congruence lattices of the (d-)twisted partition monoids, will be the subject of a future article. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:65
相关论文
共 61 条
  • [1] Abramsky S, 2008, MATH QUANTUM COMPUTA, P515
  • [2] On the number of principal ideals in d-tonal partition monoids
    Ahmed, Chwas
    Martin, Paul
    Mazorchuk, Volodymyr
    [J]. ANNALS OF COMBINATORICS, 2021, 25 (01) : 79 - 113
  • [3] [Anonymous], 1981, COURSE UNIVERSAL ALG
  • [4] Congruences on direct products of transformation and matrix monoids
    Araujo, Joao
    Bentz, Wolfram
    Gomes, Gracinda M. S.
    [J]. SEMIGROUP FORUM, 2018, 97 (03) : 384 - 416
  • [5] The finite basis problem for Kauffman monoids
    Auinger, K.
    Chen, Yuzhu
    Hu, Xun
    Luo, Yanfeng
    Volkov, M. V.
    [J]. ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 333 - 350
  • [6] Auinger K., 2020, PREPRINT ARXIV 2002
  • [7] Pseudovarieties generated by Brauer type monoids
    Auinger, Karl
    [J]. FORUM MATHEMATICUM, 2014, 26 (01) : 1 - 24
  • [8] Equational theories of semigroups with involution
    Auinger, Karl
    Dolinka, Igor
    Volkov, Mikhail V.
    [J]. JOURNAL OF ALGEBRA, 2012, 369 : 203 - 225
  • [9] Partition algebras Pk(n) with 2k > n and the fundamental theorems of invariant theory for the symmetric group Sn
    Benkart, Georgia
    Halverson, Tom
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (01): : 194 - 224
  • [10] Motzkin algebras
    Benkart, Georgia
    Halverson, Tom
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 473 - 502