Residual scale attention network for arbitrary scale image super-resolution

被引:33
作者
Fu, Ying [1 ]
Chen, Jian [1 ]
Zhang, Tao [1 ]
Lin, Yonggang [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Single image super-resolution; Convolutional neural network; Arbitrary scale factor; Scale attention;
D O I
10.1016/j.neucom.2020.11.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Research on super-resolution has achieved great success on synthetic data with deep convolutional neural networks. Some recent works tend to apply super-resolution to practical scenarios. Learning an accurate and flexible model for super-resolution of arbitrary scale factor is important for realistic applications, while most existing works only focus on integer scale factor. In this work, we present a residual scale attention network for super-resolution of arbitrary scale factor. Specifically, we design a scale attention module to learn discriminative features of low-resolution images by introducing the scale factor as prior knowledge. Then, we utilize quadratic polynomial of the coordinate information and scale factor to predict pixel-wise reconstruction kernels and achieve super-resolution of arbitrary scale factor. Besides, we use the predicted reconstruction kernels in image domain to interpolate low-resolution image and obtain coarse high-resolution image first, then make our main network learn high-frequency residual image from feature domain. Extensive experiments on both synthetic and real data show that the proposed method outperforms state-of-the-art super-resolution methods of arbitrary scale factor in terms of both objective metrics and subjective visual quality. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 41 条
[1]  
[Anonymous], 2016, CVPR
[2]  
[Anonymous], 2018, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2018.00262
[3]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[4]   Toward Real-World Single Image Super-Resolution: A New Benchmark and A New Model [J].
Cai, Jianrui ;
Zeng, Hui ;
Yong, Hongwei ;
Cao, Zisheng ;
Zhang, Lei .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3086-3095
[5]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[6]   Camera Lens Super-Resolution [J].
Chen, Chang ;
Xiong, Zhiwei ;
Tian, Xinmei ;
Zha, Zheng-Jun ;
Wu, Feng .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1652-1660
[7]   Fast Single-Image Super-Resolution Via Tangent Space Learning of High-Resolution-Patch Manifold [J].
Dang, Chinh ;
Radha, Hayder .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (04) :605-616
[8]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[9]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[10]  
DUCHON CE, 1979, J APPL METEOROL, V18, P1016, DOI 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO