Multi-order fractional differential equations and their numerical solution

被引:245
作者
Diethelm, K
Ford, NJ
机构
[1] Tech Univ Braunschweig, Inst Angew Math, D-38106 Braunschweig, Germany
[2] Chester Coll Higher Educ, Dept Math, Chester CH1 4BJ, Cheshire, England
关键词
multi-term fractional differential equation; caputo derivative; existence; uniqueness; structural stability; Adams method;
D O I
10.1016/S0096-3003(03)00739-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of (possibly nonlinear) fractional differential equations of the form y((alpha))(t) = f(t,y(t),y((beta1))(t),y((beta2))(t), ...,y((betan))(t)) with alpha > beta(n) > beta(n-1) > ... > beta(1) and alpha - beta(n) less than or equal to 1, beta(j) - beta(j-1) less than or equal to 1, beta < beta(1) less than or equal to 1, combined with suitable initial conditions. The derivatives are understood in the Caputo sense. We begin by discussing the analytical questions of existence and uniqueness of solutions, and we investigate how the solutions depend on the given data. Moreover we propose convergent and stable numerical methods for such initial value problems. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:621 / 640
页数:20
相关论文
共 23 条
[11]  
Diethelm K., 1997, ELECTRON T NUMER ANA, V5, P1
[12]  
DIETHELM K, 0202 TU BRAUNSCHW MA
[13]  
Diethelm K, 1999, Scientific computing in chemical engineering II, P217, DOI 10.1007/978-3-642-60185-9
[14]  
Diethelm K., 1999, Forschung und wissenschaftliches Rechnen, V1998, P57
[15]   The numerical solution of linear multi-term fractional differential equations: systems of equations [J].
Edwards, JT ;
Ford, NJ ;
Simpson, AC .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (02) :401-418
[16]   The numerical solution of fractional differential equations: Speed versus accuracy [J].
Ford, NJ ;
Simpson, AC .
NUMERICAL ALGORITHMS, 2001, 26 (04) :333-346
[17]   DAMPING DESCRIPTION INVOLVING FRACTIONAL OPERATORS [J].
GAUL, L ;
KLEIN, P ;
KEMPLE, S .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1991, 5 (02) :81-88
[18]  
GLOCKLE WG, 1995, BIOPHYS J, V68, P46, DOI 10.1016/S0006-3495(95)80157-8
[19]  
LUBICH C, 1985, MATH COMPUT, V45, P463, DOI 10.1090/S0025-5718-1985-0804935-7
[20]  
Mainardi F., 1997, Fractals and Fractional Calculus in Continuum Mechanics, P291, DOI DOI 10.1007/978-3-7091-2664-6_7