共 50 条
Entropic selectivity in air separation via a bilayer nanoporous graphene membrane
被引:5
|作者:
Wang, Song
[1
]
Dai, Sheng
[2
,3
]
Jiang, De-en
[1
]
机构:
[1] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
关键词:
ORGANIC FRAMEWORK NANOSHEETS;
GAS SEPARATION;
ADSORPTIVES;
PERMEATION;
DYNAMICS;
PROBES;
D O I:
10.1039/c9cp02670c
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Membranes represent an energy-efficient technology for air separation, but it is difficult to control the pore size to separate N-2 and O-2 due to their similar kinetic diameters. Here we demonstrate by molecular dynamics simulations that a bilayer nanoporous graphene membrane with continuously tunable pore sizes by the offset between the two graphene layers can achieve O-2/N-2 selectivity of up to 26 with a permeance of over 10(5) GPU (gas permeation unit). We find that entropic selectivity is the main reason behind the high selectivity via the tumbling movement of the skinnier and shorter O-2 molecules entering and passing through the elliptic-cylinder-shaped nanopores of the bilayer membrane. Such motion is absent in the single-layer graphene membrane with pores of similar size and shape which yields an O-2/N-2 selectivity of only 6 via molecular sieving alone. Hence the bilayer nanoporous graphene membrane provides a novel way to enhance the entropic selectivity for gas separation by controlling both the pore size and the 3D pore shape.
引用
收藏
页码:16310 / 16315
页数:6
相关论文