Classification of Planetary Nebulae through Deep Transfer Learning

被引:7
作者
Awang Iskandar, Dayang N. F. [1 ,2 ]
Zijlstra, Albert A. [2 ]
McDonald, Iain [2 ,3 ]
Abdullah, Rosni [4 ]
Fuller, Gary A. [2 ]
Fauzi, Ahmad H. [1 ]
Abdullah, Johari [1 ]
机构
[1] Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Sarawak 94300, Malaysia
[2] Univ Manchester, Sch Nat Sci, Dept Phys & Astron, Jodrell Bank,Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] Open Univ, Sch Phys Sci, Walton Hall,Kents Hill, Milton Keynes MK7 6AA, Bucks, England
[4] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
基金
英国科学技术设施理事会;
关键词
deep learning; transfer learning; planetary nebulae; morphology; classification; HASH DB; Pan-STARRS;
D O I
10.3390/galaxies8040088
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study investigate the effectiveness of using Deep Learning (DL) for the classification of planetary nebulae (PNe). It focusses on distinguishing PNe from other types of objects, as well as their morphological classification. We adopted the deep transfer learning approach using three ImageNet pre-trained algorithms. This study was conducted using images from the Hong Kong/Australian Astronomical Observatory/Strasbourg Observatory H-alpha Planetary Nebula research platform database (HASH DB) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). We found that the algorithm has high success in distinguishing True PNe from other types of objects even without any parameter tuning. The Matthews correlation coefficient is 0.9. Our analysis shows that DenseNet201 is the most effective DL algorithm. For the morphological classification, we found for three classes, Bipolar, Elliptical and Round, half of objects are correctly classified. Further improvement may require more data and/or training. We discuss the trade-offs and potential avenues for future work and conclude that deep transfer learning can be utilized to classify wide-field astronomical images.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 37 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Compact planetary nebulae: improved IR diagnostic criteria based on classification tree modelling [J].
Akras, Stavros ;
Guzman-Ramirez, Lizette ;
Goncalves, Denise R. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (03) :3238-3250
[3]  
[Anonymous], 2016, ARXIV161205243
[4]  
[Anonymous], 2015, ICLR
[5]  
Baeza-Yates R., 1999, MODERN INFORM RETRIE, V463
[6]   Shapes and shaping of planetary nebulae [J].
Balick, B ;
Frank, A .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 2002, 40 :439-486
[7]   Machine and Deep Learning applied to galaxy morphology - A comparative study [J].
Barchi, P. H. ;
de Carvalho, R. R. ;
Rosa, R. R. ;
Sautter, R. A. ;
Soares-Santos, M. ;
Marques, B. A. D. ;
Clua, E. ;
Goncalves, T. S. ;
de Sa-Freitas, C. ;
Moura, T. C. .
ASTRONOMY AND COMPUTING, 2020, 30
[8]   The Hubble Ultra Deep Field [J].
Beckwith, Steven V. W. ;
Stiavelli, Massimo ;
Koekemoer, Anton M. ;
Caldwell, John A. R. ;
Ferguson, Henry C. ;
Hook, Richard ;
Lucas, Ray A. ;
Bergeron, Louis E. ;
Corbin, Michael ;
Jogee, Shardha ;
Panagia, Nino ;
Robberto, Massimo ;
Royle, Patricia ;
Somerville, Rachel S. ;
Sosey, Megan .
ASTRONOMICAL JOURNAL, 2006, 132 (05) :1729-1755
[9]   Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications [J].
Carneiro, Tiago ;
Medeiros Da Nobrega, Raul Victor ;
Nepomuceno, Thiago ;
Bian, Gui-Bin ;
De Albuquerque, Victor Hugo C. ;
Reboucas Filho, Pedro Pedrosa .
IEEE ACCESS, 2018, 6 :61677-61685
[10]  
Chambers K.C., 2019, ARXIVASTROPHIM161205