Accelerating Multivariate Cryptography with Constructive Affine Stream Transformations

被引:1
作者
Carenzo, Michael [1 ]
Polak, Monika [1 ]
机构
[1] Rochester Inst Technol, 1 Lomb Mem Dr, Rochester, NY 14623 USA
来源
PROCEEDINGS OF THE 2019 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS) | 2019年
关键词
D O I
10.15439/2019F277
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On December 20th, 2016, the National Institute of Standards and Technology (NIST) formally initiated a competition to solicit, evaluate, and standardize one or more quantum resistant cryptographic algorithms. Among the current candidates is a cryptographic primitive which has shown much promise in the post-quantum age, Multivariate Cryptography. These schemes compose two affine bijections S and T with a system of multivariate polynomials. However, this composition of S and T becomes costly as the data encrypted grows in size. Here we present Constructive Affine Stream (CAS) Transformations, a set of algorithms which enable specialized, large-scale, Aline transformations in O(n) space and O(n log n) time, without compromising security. The goal of this paper is to address the practical problems related to affine transformations common among almost all multivariate cryptographic schemes.
引用
收藏
页码:221 / 225
页数:5
相关论文
共 11 条
[1]  
Bernstein D., 2009, Introduction to Post-Quantum Cryptography, P1, DOI [10.1007/978-3-540-88702-7_1, DOI 10.1007/978-3-540-88702-7_1]
[2]  
Canniere C. D., 2008, TRIVIUM, DOI [10.1007/978- 3- 540-68351- 3_18, DOI 10.1007/978-3-540-68351-3_18]
[3]  
Carenzo M., 2019, STUDY MULTIVARIATE C
[4]  
Ding J., 2009, MULTIVARIATE PUBLIC, DOI [10. 1007/978- 3- 540-88702- 7_6, DOI 10.1007/978-3-540-88702-7_6]
[5]  
Ding J., 2019, RAINBOW DIGITAL SIGN
[6]  
Lazebnik F., 1995, B AM MATH SOC, DOI [10.1090/S0273-0979-1995-00569-0, 10.1090/S0273- 0979-1995- 00569-0]
[7]  
Polak M., 2013, ELECT NOTES DISCRETE, DOI [10.1016/j.endm.2013.07.05, DOI 10.1016/J.ENDM.2013.07.05]
[8]  
Sakumoto K., 2011, PUBLIC KEY IDENTIFIC, DOI [10.1007/978- 3-642-22792- 9_40, DOI 10.1007/978-3-642-22792-9_40]
[9]   Simple Matrix - A Multivariate Public Key Cryptosystem (MPKC) for Encryption [J].
Tao, Chengdong ;
Xiang, Hong ;
Petzoldt, Albrecht ;
Ding, Jintai .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 35 :352-368
[10]  
Ustimenko Vasyl, 2017, Tatra Mountains Mathematical Publications, V70, P107, DOI 10.1515/tmmp-2017-0021