Local well-posedness of nonlinear dispersive equations on modulation spaces

被引:75
作者
Benyi, Arpad [1 ]
Okoudjou, Kasso A. [2 ]
机构
[1] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
FOURIER MULTIPLIERS; EMBEDDINGS;
D O I
10.1112/blms/bdp027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using tools of time-frequency analysis, we obtain some improved local well-posedness results for the nonlinear Schrodinger, nonlinear wave and nonlinear Klein-Gordon equations with Cauchy data in modulation spaces M(0,s)(p,1).
引用
收藏
页码:549 / 558
页数:10
相关论文
共 16 条
[1]  
[Anonymous], J DIFFERENTIAL EQUAT
[2]  
[Anonymous], 2006, J FUNCT ANAL
[3]  
Bényi A, 2005, J OPERAT THEOR, V54, P387
[4]   Unimodular Fourier multipliers for modulation spaces [J].
Benyi, Arpad ;
Groechenig, Karlheinz ;
Okoudjou, Kasso A. ;
Rogers, Luke G. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 246 (02) :366-384
[5]  
Feichtinger H.G., 2003, Technical Report, P99
[6]   Fourier multipliers of classical modulation spaces [J].
Feichtinger, Hans G. ;
Narimani, Ghassem .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (03) :349-359
[7]   Time-frequency analysis on modulation spaces Mmp,q, 0 < p,q ≤ ∞ [J].
Galperin, YV ;
Samarah, S .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (01) :1-18
[8]  
GROCHENIG K, 2001, FDN TIME FREQUENCY A
[9]  
Kobayashi M., 2006, J. Funct. Spaces Appl, V4, P329, DOI DOI 10.1155/2006/409840
[10]  
Kobayashi M, 2007, J FUNCT SPACE APPL, V5, P1