Extension of compact mappings and ℵ0-hyperconvexity

被引:4
作者
Espínola, R [1 ]
López, G [1 ]
机构
[1] Univ Sevilla, Fac Matemat, Dept Analisis Matemat, Seville 41080, Spain
关键词
aleph(0)-hyperconvexity; extension of mapping; extremal functions; fixed point; metric spaces; modulus of continuity; uniformly continuous compact mappings;
D O I
10.1016/S0362-546X(01)00731-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A uniformly continuous mapping with a certain modulus of continuity between two metric spaces was studied. The hyperconvexity of one of the metric spaces was defined and results related to the ball intersection properties, extension of linear operators and extension of uniformly continuous mappings were listed. A fixed point theorem on hyperconvex metric spaces was also proved.
引用
收藏
页码:1127 / 1135
页数:9
相关论文
共 29 条
  • [1] Aronszajn N., 1956, PAC J MATH, V6, P405
  • [2] Ayerbe JM, 1997, MEASURES NONCOMPACTN, V99
  • [3] Baillon J. B., 1988, FIXED POINT THEORY I, V72, P11, DOI [10.1090/conm/072/956475, DOI 10.1090/CONM/072/956475]
  • [4] A fixed point theorem in hyperconvex spaces
    Bugajewski, D
    Grzelaczyk, E
    [J]. ARCHIV DER MATHEMATIK, 2000, 75 (05) : 395 - 400
  • [5] Cartwright D. I., 1975, MEM AM MATH SOC, V164, P1
  • [6] Discovering the algebraic structure on the metric injective envelope of a real Banach space
    Cianciaruso, F
    DePascale, E
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1997, 78 (03) : 285 - 292
  • [7] Nonexpansive retractions in hyperconvex spaces
    Espínola, R
    Kirk, WA
    López, G
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) : 557 - 570
  • [8] ESPINOLA R, 1999, NONLINEAR ANAL CONVE, P142
  • [9] Espinola R., 1996, REND CIRCOLO MAT 2 S, V40, P129
  • [10] GROTHENDIEK A, 1953, CAN J MATH, V8, P1