Some infinite dimensional representations of reductive groups with Frobenius maps

被引:14
作者
Xi NanHua [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
infinite dimensional representation; reductive group; induced module; LINEAR-GROUPS; SHINTANI;
D O I
10.1007/s11425-014-4818-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct certain irreducible infinite dimensional representations of algebraic groups with Frobenius maps. In particular, a few classical results of Steinberg and Deligne & Lusztig on complex representations of finite groups of Lie type are extended to reductive algebraic groups with Frobenius maps.
引用
收藏
页码:1109 / 1120
页数:12
相关论文
共 14 条
[1]  
[Anonymous], 1984, ANN MATH STUDIES
[2]   On a theorem of Shintani [J].
Bonnafé, C .
JOURNAL OF ALGEBRA, 1999, 218 (01) :229-245
[3]   HOMOMORPHISM ABSTRACTS OF SIMPLE ALGEBRAIC GROUPS [J].
BOREL, A ;
TITS, J .
ANNALS OF MATHEMATICS, 1973, 97 (03) :499-571
[4]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[5]  
Curtis C. W., 1981, PURE APPL MATH, VII
[6]  
Curtis Charles W., 1981, PURE APPL MATH, VI
[7]   REPRESENTATIONS OF REDUCTIVE GROUPS OVER FINITE-FIELDS [J].
DELIGNE, P ;
LUSZTIG, G .
ANNALS OF MATHEMATICS, 1976, 103 (01) :103-161
[8]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[9]   LEFT CELLS IN WEYL GROUPS [J].
LUSZTIG, G .
LECTURE NOTES IN MATHEMATICS, 1983, 1024 :99-111
[10]   CHARACTER SHEAVES .5. [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1986, 61 (02) :103-155