A haplotype resolved chromosomal level avocado genome allows analysis of novel avocado genes

被引:18
作者
Nath, Onkar [1 ]
Fletcher, Stephen J. [1 ]
Hayward, Alice [1 ]
Shaw, Lindsay M. [1 ]
Masouleh, Ardashir Kharabian [1 ]
Furtado, Agnelo [1 ]
Henry, Robert J. [1 ]
Mitter, Neena [1 ]
机构
[1] Univ Queensland, Queensland Alliance Agr & Food Innovat, Brisbane, Qld 4072, Australia
关键词
ANNOTATION; IDENTIFICATION; SEQUENCE; ENZYMES; HISAT; FRUIT; DNA;
D O I
10.1093/hr/uhac157
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Avocado (Persea americana) is a member of the magnoliids, an early branching lineage of angiosperms that has high value globally with the fruit being highly nutritious. Here, we report a chromosome-level genome assembly for the commercial avocado cultivar Hass, which represents 80% of the world's avocado consumption. The DNA contigs produced from Pacific Biosciences HiFi reads were further assembled using a previously published version of the genome supported by a genetic map. The total assembly was 913 Mb with a contig N50 of 84 Mb. Contigs assigned to the 12 chromosomes represented 874 Mb and covered 98.8% of benchmarked single-copy genes from embryophytes. Annotation of protein coding sequences identified 48915 avocado genes of which 39207 could be ascribed functions. The genome contained 62.6% repeat elements. Specific biosynthetic pathways of interest in the genome were investigated. The analysis suggested that the predominant pathway of heptose biosynthesis in avocado may be through sedoheptulose 1,7 bisphosphate rather than via alternative routes. Endoglucanase genes were high in number, consistent with avocado using cellulase for fruit ripening. The avocado genome appeared to have a limited number of translocations between homeologous chromosomes, despite having undergone multiple genome duplication events. Proteome clustering with related species permitted identification of genes unique to avocado and other members of the Lauraceae family, as well as genes unique to species diverged near or prior to the divergence of monocots and eudicots. This genome provides a tool to support future advances in the development of elite avocado varieties with higher yields and fruit quality.
引用
收藏
页数:10
相关论文
共 54 条
[1]   OMA standalone: orthology inference among public and custom genomes and transcriptomes [J].
Altenhoff, Adrian M. ;
Levy, Jeremy ;
Zarowiecki, Magdalena ;
Tomiczek, Bartlomiej ;
Vesztrocy, Alex Warwick ;
Dalquen, Daniel A. ;
Mueller, Steven ;
Telford, Maximilian J. ;
Glover, Natasha M. ;
Dylus, David ;
Dessimoz, Christophe .
GENOME RESEARCH, 2019, 29 (07) :1152-1163
[2]   SignalP 5.0 improves signal peptide predictions using deep neural networks [J].
Armenteros, Jose Juan Almagro ;
Tsirigos, Konstantinos D. ;
Sonderby, Casper Kaae ;
Petersen, Thomas Nordahl ;
Winther, Ole ;
Brunak, Soren ;
von Heijne, Gunnar ;
Nielsen, Henrik .
NATURE BIOTECHNOLOGY, 2019, 37 (04) :420-+
[3]   Automated de novo identification of repeat sequence families in sequenced genomes [J].
Bao, ZR ;
Eddy, SR .
GENOME RESEARCH, 2002, 12 (08) :1269-1276
[4]   BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP plus and AUGUSTUS supported by a protein database [J].
Bruna, Tomas ;
Hoff, Katharina J. ;
Lomsadze, Alexandre ;
Stanke, Mario ;
Borodovsky, Mark .
NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01) :1-11
[5]   Ribonuclease H: the enzymes in eukaryotes [J].
Cerritelli, Susana M. ;
Crouch, Robert J. .
FEBS JOURNAL, 2009, 276 (06) :1494-1505
[6]   Persea americana (avocado):: bringing ancient flowers to fruit in the genomics era [J].
Chanderbali, Andre S. ;
Albert, Victor A. ;
Ashworth, Vanessa E. T. M. ;
Clegg, Michael T. ;
Litz, Richard E. ;
Soltis, Douglas E. ;
Soltis, Pamela S. .
BIOESSAYS, 2008, 30 (04) :386-396
[7]  
Chase M. W., 2005, Plant diversity and evolution: genotypic and phenotypic variation in higher plants, P7, DOI 10.1079/9780851999043.0007
[8]   Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution [J].
Chaw, Shu-Miaw ;
Liu, Yu-Ching ;
Wu, Yu-Wei ;
Wang, Han-Yu ;
Lin, Chan-Yi Ivy ;
Wu, Chung-Shien ;
Ke, Huei-Mien ;
Chang, Lo-Yu ;
Hsu, Chih-Yao ;
Yang, Hui-Ting ;
Sudianto, Edi ;
Hsu, Min-Hung ;
Wu, Kun-Pin ;
Wang, Ling-Ni ;
Leebens-Mack, James H. ;
Tsai, Isheng J. .
NATURE PLANTS, 2019, 5 (01) :63-73
[9]   Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation [J].
Chen, Jinhui ;
Hao, Zhaodong ;
Guang, Xuanmin ;
Zhao, Chenxi ;
Wang, Pengkai ;
Xue, Liangjiao ;
Zhu, Qihui ;
Yang, Linfeng ;
Sheng, Yu ;
Zhou, Yanwei ;
Xu, Haibin ;
Xie, Hongqing ;
Long, Xiaofei ;
Zhang, Jin ;
Wang, Zhangrong ;
Shi, Mingming ;
Lu, Ye ;
Liu, Siqin ;
Guan, Lanhua ;
Zhu, Qianhua ;
Yang, Liming ;
Ge, Song ;
Cheng, Tielong ;
Laux, Thomas ;
Gao, Qiang ;
Peng, Ye ;
Liu, Na ;
Yang, Sihai ;
Shi, Jisen .
NATURE PLANTS, 2019, 5 (01) :18-25
[10]   The Litsea genome and the evolution of the laurel family [J].
Chen, Yi-Cun ;
Li, Zhen ;
Zhao, Yun-Xiao ;
Gao, Ming ;
Wang, Jie-Yu ;
Liu, Ke-Wei ;
Wang, Xue ;
Wu, Li-Wen ;
Jiao, Yu-Lian ;
Xu, Zi-Long ;
He, Wen-Guang ;
Zhang, Qi-Yan ;
Liang, Chieh-Kai ;
Hsiao, Yu-Yun ;
Zhang, Di-Yang ;
Lan, Si-Ren ;
Huang, Laiqiang ;
Xu, Wei ;
Tsai, Wen-Chieh ;
Liu, Zhong-Jian ;
Van de Peer, Yves ;
Wang, Yang-Dong .
NATURE COMMUNICATIONS, 2020, 11 (01)